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ABSTRACT 

Davis, Clay D. Ph.D., Purdue University, May 2013. Three Essays on the Effect of Wind 
Generation on Power System Planning and Operations. Major Professor: Paul V. Preckel. 
 

In a report titled “20% Wind Energy by 2030” the United States Department of 

Energy assembled a group to assess the likely effects of wind generation providing 20% 

of electricity consumption by 2030 (DOE, 2008).  While the benefits of wind generation 

are well known, some drawbacks are still being understood as wind power is integrated 

into the power grid at increasing levels.  The primary difference between wind generation 

and other forms of generation is the intermittent, and somewhat unpredictable, aspect of 

this resource.  The somewhat uncontrollable aspect of wind generation makes it 

important to consider the relationship between this resource and load, and also how the 

operation of other non-wind generation resources may be affected.  The three essays that 

comprise this dissertation focus on these and other important issues related to wind 

generation; leading to an improved understanding of how to better plan for and utilize 

this resource.   

 The first essay addresses the cost of increased levels of installed wind capacity 

from both a capacity planning and economic dispatch perspective to arrive at the total 

system cost of installing a unit of wind capacity.  This total includes not only the cost of 

the wind turbine and associated infrastructure, but also the cost impact an additional unit 

of wind capacity has on the optimal mix and operation of other generating units in the 

electricity supply portfolio.  The results of the model showed that for all wind expansion 

scenarios, wind capacity is not cost-effective regardless of the level of the wind 

production tax credit and carbon prices that were considered.  Larger levels of installed 

wind capacity result in reduced variable cost, but this reduction is not able to offset 



 xi

increases in capital cost, as a unit of installed wind capacity does not result in an equal 

reduction in other non-wind capacity needs. 

 The second essay develops a methodology to better handle unexpected short term 

fluctuations in wind generation within the existing power system.  The methodology 

developed in this essay leads to lower expected costs by anticipating and planning for 

fluctuations in wind generation by focusing on key constraints in the system.  The 

modified methodology achieves expected costs for the UC-ED problem that are as low as 

the full stochastic model and markedly lower than the deterministic model. 

The final essay focuses on valuing energy storage located at a wind site through 

multiple revenue streams, where energy storage is valued from the perspective of a profit 

maximizing investor.  Given the current state of battery storage technology, a battery 

capacity of zero is optimal in the setting considered in this essay.  The results presented 

in this essay are dependent on a technological breakthrough that substantially reduces 

battery cost and conclude that allowing battery storage to simultaneously participate in 

multiple wholesale markets is optimal relative to participating in any one market alone.  

Also, co-locating battery storage and wind provides value by altering the optimal 

transmission line capacity to the battery and wind site.     

 This dissertation considers problems of wind integration from an economic 

perspective and builds on existing work in this area.  The economics of wind integration 

and utilization are important because wind generation levels are already significant and 

will likely become more so in the future.  While this dissertation adds to the existing 

literature, additional work is needed in this area to ensure wind generation adds as much 

value to the overall system as possible. 
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CHAPTER 1: INTRODUCTION 

In a report titled “20% Wind Energy by 2030” the United States Department of 

Energy assembled a group to assess the likely effects of wind generation providing 20% 

of electricity consumption by 2030 (DOE, 2008).  Deployment of renewable energy 

resources, particularly wind generation, is growing at faster rates year over year, 

especially in the United States where wind generation increased 27% in 2011 over 2010 

(EIA, 2012).  While wind generation is increasing at a fast pace, it still makes up a 

relatively small portion of total electricity at 3% of total generation in 2011 (EIA, 2012).  

Even though wind generation comprises a small portion of the total, this small amount is 

having a significant impact on the functioning of the electricity system due to the 

intermittent nature of wind generation.  The highly variable nature of wind generation 

(and solar generation in general) has resulted in the North American Electric Reliability 

Corporation (NERC) forming the Integration of Variable Generation Task Force 

(IVGTF), to study the integration of these variable resources (Lauby et al., 2011).  

Intermittent forms of generation pose many challenges to the power system, from system 

planning to system operations.  One challenge system planners face is determining the 

effect of a unit of wind generating capacity on other capacity needs in order to maintain 

various reliability parameters, such as loss of load probability (LOLP).  On a different 

scale, power system operators face the challenge of determining the level of wind 

generation that can be counted on over time periods ranging from the next five minutes to 

a few days.  

The three essays in this dissertation address the aforementioned issues and add to 

the existing literature on integrating intermittent resources.  The first essay addresses the 

cost of increased levels of installed wind capacity from both a capacity planning and 

economic dispatch perspective to arrive at the total system cost of installing a unit of 
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wind capacity.  This total includes not only the cost of the wind turbine and associated 

infrastructure, but also the cost impact an additional unit of wind capacity has on the 

optimal mix and operation of other generating units in the electricity supply portfolio.  

The second essay develops a methodology to better handle unexpected short term 

fluctuations in wind generation within the existing power system and aims to reduce 

expected unit commitment-economic dispatch (UC-ED) costs.  The methodology 

developed in this essay leads to lower expected costs by anticipating and planning for 

fluctuations in wind generation in the unit commitment stage.  The final essay focuses on 

valuing energy storage located at a wind site through multiple revenue streams and takes 

the perspective of a profit maximizing investor. 

   

1.1 Essay 1: Determining the Impact of Wind on System Costs via the Temporal Patterns 

of Load and Wind Generation 

Ambitious targets have been set for expanding electricity generation from 

renewable sources, including wind. The United States Department of Energy assembled a 

group to assess the likely effects of wind generation providing 20% of electricity 

consumption by 2030 (DOE, 2008).  With only small amounts of large-scale energy 

storage currently in use, electricity must be generated as it is needed.  Electricity demand 

(load) fluctuates throughout the day requiring generating units to follow these changes in 

order to satisfy demand.  Wind generation also fluctuates throughout the day and other 

generating units must accommodate this additional variability.  Therefore, it is the load 

net of wind generation that other generating units must satisfy.  The variability in wind 

generation tends to increase system variability and alter the optimal mix of non-wind 

generating units.  As states plan for increasing levels of wind generation in their portfolio 

of generation resources it is important to consider how this intermittent resource impacts 

the need for other generation resources. 

In this essay three fossil fueled generation technologies are considered in addition 

to wind generation to make up the portfolio of generation resources.  Baseload generation 

is characterized by high capital cost and low variable cost making this the lowest cost 

resource when the resource operates for the majority of hours during the year.  
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Alternatively, peaking generation is characterized by low capital cost and high variable 

cost making this resource the lowest cost form of generation for supplying power during 

a relatively small number of hours during the year.  Cycling capacity is between baseload 

and peaking in terms of capital cost and variable cost making this resource economical 

when required to operate an intermediate number of hours during the year.  Baseload, 

cycling and peaking generation assets are represented by different technologies 

(pulverized coal, natural gas combined cycle and natural gas combustion turbine, 

respectively).   

A case study for Indiana estimates the value of wind capacity and demonstrates 

how to optimize its level and the levels of other generation resources.  Changes are driven 

by temporal patterns of wind power output and load.  System wide impacts are calculated 

for energy, capacity, and costs under multiple wind expansion scenarios which highlight 

the geographic characteristics of a systems portfolio of wind generation.  The impacts of 

carbon prices, as proposed in the Bingaman Bill, are considered (Bingaman, 2011).  

Finally, calculations showing the effect increasing levels of wind generation will have on 

end use Indiana retail rates are included.   

 

1.2 Essay 2: Modified Unit Commitment Due to Wind Forecasting Errors 

The variable and intermittent nature of wind generation poses a number of 

challenges spanning many areas of electricity markets, with none more front and center 

than accurately forecasting this highly variable energy source.  Forecasting wind power 

generation is difficult; historically weather models were not designed to predict wind 

speeds on the time scale required to accurately predict wind generation.  Forecasts are 

able to predict there will be a storm tomorrow and this will have a dramatic impact on the 

variability of wind generation, but exactly what time of day a ramp event (necessary 

change in generation levels to match generation with load) will occur is difficult to 

predict (Burr, 2010).  It is this inability to predict exactly when sudden changes in wind 

generation will occur that poses many challenges for schedulers and system operators. 

While this essay does not develop improved methods for forecasting wind generation, it 

modifies the traditional planning problems to reduce the cost of inaccuracies in forecasts.   
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This essay uses a modified unit commitment-economic dispatch (UC-ED) model 

to better account for wind generation uncertainty, as compared to a deterministic UC-ED 

model, while significantly reducing the computational burden of a full stochastic UC-ED 

model.  The unit commitment (UC) stage is considered the strategic resource deployment 

planning stage and considers information on expected system conditions, such as the 

level of load and wind generation.  In this stage, generating units are committed for each 

hour of a future operating day.  On the other hand, economic dispatch (ED) takes place 

five to thirty minutes before real-time operations, where the actual realization of 

uncertain variables, such as load and wind generation occurs.  Forecasts, especially for 

wind generation, can change dramatically between the UC and ED stages; as more 

accurate wind forecasts become available closer to the economic dispatch stage.  To 

handle wind generation uncertainty stochastic models consider multiple possible wind 

generation levels, while deterministic models only consider one level for the uncertain 

wind generation.  By considering multiple scenarios in the stochastic model these models 

are often able to achieve a lower expected cost by considering multiple possible wind 

generation realizations.  However, the increased computational burden from considering 

multiple wind generation states for the stochastic model has limited its use in practice.   

Comparisons using two test systems are made across three model types: 

deterministic, modified stochastic (developed in this essay), and full stochastic.  A 

smaller, four bus, model is used to dissect the models to show how the models compare, 

while a larger, fourteen bus, model is used to show benefits are still achieved with a more 

realistic system using wind generation forecast errors derived from actual market data.  

The benefits of the modified stochastic model are apparent with both models, both in 

achieving costs savings comparable to the full stochastic model and markedly reducing 

problem size relative to the full stochastic problem.    

 

1.3 Essay 3: Valuation of Battery Energy Storage with Wind Generation 

In response to the dramatic increase in intermittent forms of electricity generation 

(wind and solar) an emphasis has been placed on the adoption of fast responding 

resources, such as battery storage, flywheels, and compressed air storage, which are 
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capable of quickly responding to fluctuations in output from these intermittent resources.  

In a report titled “20% Wind Energy by 2030” the United States Department of Energy 

assembled a group to assess the likely effects of wind generation providing 20% of 

electricity consumption by 2030 (DOE, 2008).  Denholm et al. (2010) concluded that 

wind penetrations at these levels would increase the flexibility requirements of the 

system: likely creating market opportunities for fast responding energy storage 

technologies.  In order to determine the likely adoption of the various energy storage 

technologies, methods to accurately determine their value are required. 

Energy storage is capable of simultaneously participating in the multiple markets 

that comprise wholesale electricity markets.  As a result of the lack of storability, 

electricity must be generated as it is needed and has given rise to wholesale markets 

comprised of multiple markets focused on different time periods.  Generating units 

require notice to start with some requiring longer lead times than others.  On the demand 

side, utilities and other parties that purchase energy from these markets like to plan in 

advance of when the energy will be needed.  The day-ahead market allows for 

transactions in advance of when the energy is needed and the majority of all energy sold 

in the wholesale markets is through this market.  The day-ahead market clears one day in 

advance of when the energy is needed for each hour of the next operating day.  The real-

time market clears fifteen to thirty minutes before the energy is needed and is a much 

smaller market in terms of energy relative to the day-ahead market.  The shortest term 

market is the market for ancillary services, which is used to procure generation to meet 

fluctuations in demand ranging from a matter of seconds to a few minutes.  These 

markets will likely result in different market clearing prices at any given point in time.     

This essay develops an approach to valuing battery energy storage technologies 

using a co-optimization framework to determine the value of storage serving multiple 

roles simultaneously.  Four sources of value for energy storage are considered.  Three of 

the four sources of value considered are supplying resources to wholesale markets and 

include: selling energy in the day-ahead energy market, selling energy in the real-time 

market, and selling capacity into the regulation market (i.e., one of the ancillary service 

markets).  The fourth source of revenue is the potential for energy storage to alter the 
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optimal transmission capacity to the wind site.  In the United States, the best wind 

resources are located in the plains region of the country and are not near the coasts, which 

are the highest demand areas.  Locating storage near a wind site may alter the optimal 

transmission capacity from the wind site to connect into the electric grid.    The results of 

this essay show that battery cost is currently too high given current market conditions, but 

with lower battery costs this technology provides value through all four sources 

considered. 

 

1.4 Overall Objective and Organization 

These three essays address important aspects of wind generation and aim to 

increase understanding and improve decision making when it comes to considering the 

role wind generation will serve in meeting future energy needs.  The benefits of wind 

generation (e.g. renewable, zero emissions, and near zero variable cost) are often used as 

reasons in favor of wind generation; however wind generation presents challenges which 

also deserve consideration.  This research focuses on better understanding the tradeoffs 

related to wind generation and offering some solutions to better utilize this resource.  In 

this dissertation the three essays are covered in chapters two through four and the final 

chapter offers general conclusions, discusses limitations of this research, and covers 

suggestions for future work.  
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CHAPTER 2: DETERMINING THE IMPACT OF WIND ON SYSTEM COSTS VIA 

THE TEMPORAL PATTERNS OF LOAD AND WIND GENERATION 

2.1 Introduction and Literature Review 

Increases in wind generation’s share of states’ generation portfolios, increase the 

need to understand how wind generation impacts needs for other generating resources.  

Due to its intermittency, increasing the level of energy generated from wind will alter the 

operational and capacity requirements of other generation resource types (e.g. baseload, 

cycling and peaking).   

 Wind generation is not dispatchable – that is, generation output cannot be 

increased at will to meet increases in electricity demand.  Because it has zero fuel cost, 

wind generation is usually considered a price taker; so it is the combination of wind 

power variability in addition to load variability that the remaining generating units in the 

system must be able to meet (Wan, 2011).  The temporal patterns of wind generation and 

electricity demand define the net load that must be served by other generation resources 

to meet demand at any given time (Wan, 2011).  While wind generation may reduce the 

overall amount of energy needed from the other generation resources, it may also shift 

the needs among generation resource types.  A load net of wind duration curve may be 

used to determine the optimal mix of non-wind generation resources and is created by 

sorting per period load minus per period wind generation in descending order.  Doherty, 

Outhred, and O’Malley (2006) show increases in penetration of wind generation cause a 

steepening of the load net of wind duration curve and result in increases in peaking 

capacity needs and reductions in baseload needs. 

Most of the existing work on valuing wind capacity has focused on reliability for 

serving peak load (see e.g. Milligan and Porter, 2008; Billinton and Bai, 2004).  While 

this is an important dimension of the problem, it does not directly address the impact of 
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investments in wind capacity on electricity prices.  While there has been a fair amount of 

work on the cost of wind capacity (e.g Junginger, Faaij, and Turkenburg, 2005; Dale et 

al., 2004), work on the value of capacity – i.e. the impact of wind on the average cost of 

serving load – in the context of an existing generating system is more limited.  Karki and 

Billinton (2004) use simulation modeling to estimate the cost savings due to varying 

levels of installed wind capacity finding that the offset fuel cost increases at a decreasing 

rate as wind turbines are added and that wind utilization efficiency declines as turbines 

are added.   

Puga (2010) shows that large amounts of wind capacity will require increased 

levels of capacity with fast-ramping capabilities.  He also shows that high levels of wind 

capacity can lead to increased cycling of baseload units, particularly during periods of 

low load and high wind.  Increased cycling of baseload generation may lead to higher 

O&M costs and have implications for unit lifetimes.   

Delarue et al. (2011) uses a portfolio theory approach to determine the optimal 

mix of generation resources by using a linear program to minimize the cost of meeting 

demand subject to ramping limits on generation, but does not allow for the possibility of 

wind curtailment.  In this framework it may be beneficial to curtail wind generation if 

ramping of the load net of wind generation exceeds ramping capabilities of non-wind 

resources.  Curtailing wind may result in lower system costs if it reduces the need to 

build more expensive, faster ramping units that will be used to meet infrequent large 

ramp events.    

While these papers cover various aspects of wind generation, they do not consider 

both operational and planning aspects simultaneously and ultimately the impact this will 

have on retail electricity prices.  Increasing levels of wind generation will not only impact 

operational decisions (economic dispatch), but also the optimal mix of generation 

resources determined during the resource planning period.  Doherty, Outhred, and 

O’Malley (2006) determine capacity needs of non-wind generation resources as wind 

capacity is increased using a minimum cost economic dispatch framework, but their 

paper focuses on Ireland where characteristics of wind generation and the existing 

resource mix may be very different than the wind generation and resource mix in Indiana.  
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The model developed in section 2 reflects not only investment costs of wind capacity 

expansion and fuel savings, but also the impact on investment in other generation 

capacity.  Capacity resource levels are determined relative to existing levels, so the 

optimal resource mix is not independent of the existing Indiana capacity levels.  Section 3 

considers various wind capacity expansion scenarios to determine the benefits from 

geographic diversification and section 4 covers the rate impact on retail customers in the 

state of Indiana as a result of increased levels of wind generation.  This impact on retail 

rates is of value to policymakers as this paper shows how changes in system costs due to 

larger levels of wind generation will directly impact end use retail customers.   

 

2.2 Methodology 

This paper provides a framework for assessing the impact of wind generation on 

the need for other generation resources, using the state of Indiana as an example.  Here, 

we use observed load data for 2004-2006 for the state of Indiana and estimated wind 

generation data from the National Renewable Energy Laboratory (NREL, 2010) to 

estimate the impact of wind generation on system costs and on the need for other 

generation types.  Since Indiana is a regulated state it is important for capacity planning 

purposes to consider the effect of additional wind generation committed to serving 

Indiana load on other resources within the state.  Baseload, cycling and peaking 

generation assets are represented by different technologies (pulverized coal, natural gas 

combined cycle and natural gas combustion turbine, respectively).  Installed generation 

assets are based on existing 2007 Indiana capacity, and capacity additions to meet 

projected demand in 2025 are determined for alternative levels of wind generation 

capacity assuming a ten percent reserve margin.  A reserve margin of ten percent is 

included to account for unit outages.  Using a reserve margin of ten percent is an 

approximate method to limit the loss of load probability and is applied across all 

scenarios for comparability.  Thus, our results reflect not only the investment costs of the 

wind capacity expansion and fuel savings, but also the impact on investment in other 

generation capacity.   
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The impacts of increased wind generation capacity on Indiana utilities’ generation 

portfolios are calculated in four areas: changes in generating capacity needs for baseload, 

cycling, and peaking capacity; the change in energy (MWhs) supplied by baseload, 

cycling, and peaking generating units; changes in capital costs due to changes in capacity 

requirements; and changes in variable costs resulting from changes in energy 

requirements. 

Hourly load data for the state of Indiana for 2004-2006 is used for the analysis 

(SUFG, 2009b).  Wind generation data were acquired from the National Renewable 

Energy Lab’s Eastern Wind Integration and Transmission Study (NREL, 2010).  This 

study developed wind generation estimates at ten minute intervals for various sites 

throughout the eastern United States.  The time period of the wind estimates coincides 

with the Indiana load data, which is important because wind speed affects both data 

types.  (E.g. during the summer months higher wind speeds will lead to increased wind 

generation and reductions in air conditioning load.)   

For this analysis, wind sites were chosen in close proximity to 2009 Indiana wind 

power purchase agreement (PPA) sites (SUFG, 2009a).  The site capacities were initially 

scaled to the wind capacity agreed upon in the 2009 Indiana power purchase agreements, 

totaling 770 MW.  The load data for each year were scaled from the respective year up to 

the forecasted load in 2025 (SUFG, 2009b).  That is, each annual load profile was scaled 

such that annual energy consumption is equivalent to the projected consumption in 2025 

(144,495 GWhs).  The three years of load data were all scaled to the same year (2025) in 

order to generate three distinct annual load profiles.  Impacts were calculated for each of 

the three years and averaged.  The hourly load data were linearly interpolated to ten 

minute intervals, so as to correspond to the frequency of the wind generation data. 

 

2.2.1 Capacity Impact Calculations 

Capacity requirements were calculated for the three generation resource types 

(baseload, cycling, and peaking) as wind capacity was added relative to a base resource 

case, which includes existing 2007 capacities plus planned capacity changes.  The base 
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resource case capacity levels are: 16,426 MW baseload, 2,500 MW cycling, and 3,585 

MW peaking.   

Load net of wind duration curves (LDCs) were created using the load net of wind 

profiles at each level of wind generation capacity (see Figure 2.1).  A load net of wind 

duration curve sorts the ten minute load minus the ten minute wind generation for each 

interval of the year from the highest to the lowest.  The greater the difference between the 

highest and lowest load net of wind period of the year the more load net of wind varies 

throughout the year.  In this analysis, there is no wind generation uncertainty, so that the 

analysis effectively assumes a perfect wind forecast.  Since wind generation has near zero 

variable costs and wind power purchase agreement contracts are “take-or-pay” (i.e. the 

utility must pay for the wind generation regardless of whether it is used), all energy 

generated by wind units is used in the capacity planning stage.   

Capacity levels for the three generation types were calculated using a break-even 

cost curve, in conjunction with the load net of wind duration curves.  Murphy et al. 

(1988) uses this method of dispatching to a load duration curve in a capacity expansion 

planning model.  This approach of dispatching to a load net of wind duration curve 

ignores some features of the economic dispatch problem, such as the possibility of wind 

curtailment, generator minimum up and down times, and the topology of the transmission 

network.  Determining capacity requirements in this manner results in the least cost mix 

of generation resources to serve a given load net of wind duration curve.  The break-even 

cost curve and load net of wind duration are shown below in Figure 2.1.  The upper chart 

shows the break-even points of the three generation technologies.  Where each line 

intersects the vertical axis represents the annualized per unit capital cost for each of the 

three technologies, with baseload having the highest capital cost and peaking generation 

the lowest capital cost.  The slope of each line represents the variable cost of the three 

resource types.  Peaking generation is characterized by low capital costs and high 

variable costs making this resource the lowest cost form of generation for serving the 

highest load portion of the LDC, due to peaking generation being the lowest cost form of 

generation when operating a small portion of the year.  Similarly, baseload generation is 
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the lowest cost resource to serve the lowest portion of the LDC, where this resource 

operates for the majority of hours during the year.   

Capacity requirements for the three generation resources were calculated for the 

load net of wind duration curves.  The new capacity requirements to meet 2025 demand 

were determined by subtracting the existing capacity levels (3,585 MW of peaking 

capacity, 2,500 MW of cycling capacity, and 16,426 MW of baseload capacity) from the 

levels resulting from these calculations.  If the baseload capacity requirement is less than 

16,426 MW, then no new baseload capacity is necessary and the excess base case 

baseload capacity is reclassified as cycling capacity.  Similarly, if no new cycling 

capacity is needed then both excess baseload and cycling capacity are reclassified as 

peaking capacity.  This reclassification may become more prevalent as wind capacity 

increases and is necessary to avoid idle baseload and cycling capacity.  The 2025 new 

capacity levels calculated for each generation resource type were further increased by ten 

percent to account for forced outages.  These capacity levels were used when dispatching 

the ten minute load, in order to calculate the energy impacts.    
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Figure 2.1 Break-even Cost and Load Duration Curves 

 

2.2.2 Energy Impact Calculations 

Energy impacts were calculated using a minimum cost economic dispatch model 

with wind generation being dispatched in addition to the other three non-wind generation 

technologies to meet load for each ten minute interval (shown below in (1)-(5)).  The 

notation for the linear program formulation is shown in Table 2.1.  The problem 

minimizes the cost (1) of meeting demand (2) in each time period.  Wind generation may 
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be dispatched up to the level of wind generation for a given ten minute interval (3), 

allowing for the possibility of wind curtailment when it is optimal.  The other three 

generation technologies may be dispatched up to the capacity levels determined from the 

capacity planning stage for the various levels of wind capacity, shown in (4).  If some 

wind generation is curtailed in the economic dispatch model it would alter the shape of 

the load net of wind duration curve and may have an impact on the optimal capacity.  

While wind curtailment would alter the load net of wind duration curve (and the optimal 

mix of generating capacities), this effect is expected to be minor.  Absent any wind 

curtailment the energy impact from wind generation is equal to the total wind output for 

the year, although variations in impacts are likely across the three generation 

technologies.  The final set of constraints (5) imposes ramping limits on baseload, 

peaking, and cycling generation.  Ramping limits are shown by generation technology in 

Table 2.2 and are specified as a percent of installed capacity because the number of 

generating units is not determined in this analysis.  In this problem wind curtailment will 

only take place to avoid violating a ramping limit.  Other reasons wind curtailment may 

take place in a wholesale market, which were not modeled in this analysis, are to avoid 

violating transmission constraints, wind generation forecasting errors, or wind generation 

not having a lower offer price than the offer price of the marginal generation unit.   

Energy impacts were calculated as the difference in generation for each 

technology between the base (no wind case) and generation at various levels of installed 

wind capacity.  The difference in energy supplied by baseload capacity for the load and 

load net of wind profiles determines the change in energy that must be supplied by 

baseload generation at a given level of wind capacity.  Similar calculations determine 

wind generation impacts on cycling and peaking generation.  Again, these calculations 

were made for all three years and then averaged to arrive at an expected energy impact.    

 

minீ೟,೔ ෍ ෍ ௜ܲܩ௧,௜ூ
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෍ ௜,௧௜ܩ ൅ ௧ܹ െ ௧ܮ ൌ  ሺ2ሻ                                                       ݐ ׊     0

0 ൑ ௧ܹ ൑ ௧ܹ௠௔௫     ݐ ׊                                                            ሺ3ሻ ܩ௜௠௜௡ ൑ ௜,௧ܩ ൑ ,݅ ׊     ௜௠௔௫ܩ ሺ4ሻ െܴ௜                                                       ݐ ൑ ௜,௧ܩ െ ௜,௧ିଵܩ ൑ ܴ௜     ׊ ݅,  ሺ5ሻ                                                    ݐ

 

Table 2.1 LP Notation 

Notation Definition ܶ number of time periods ݐ index of time periods ܫ number of non-wind generating units ݅ index for a non-wind generating unit ௜ܲ  variable cost of generating unit i  ܩ௜,௧ generation level of unit i in time period t ܩ௜௠௜௡ minimum generation level of unit i ܩ௜௠௔௫ maximum generation level of unit i ܮ௧ load in period t ܴ௜ ramping limit of unit i ௧ܹ wind generation level in period t ௧ܹ௠௔௫ maximum wind generation level in period t 
 

Table 2.2 Generator Ten Minute Ramping Limits as a Percent of Installed Capacitya 

Unit Vintage Generation Type Ramping Limit  
(% of capacity) 

New Units   
 Baseload 40 
 Cycling 70 
 Peaking 100 
 Wind 100b 
Existing Units   
 Baseload 10 
 Cycling 60 
 Peaking 100 

a Baseload ramping limits p.6 (Ihle, 2003); Cycling ramping limits Table 1 (NWPP, 2002); Peaking is 
assumed to have a ramping limit of 100 percent of installed capacity. 
b Wind generation is capable of ramping between zero and the level of wind generation available for that 
ten minute period, as opposed to a percent of installed generation capacity. 
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2.2.3 Capital Cost Impact Calculations 

Capital costs for this analysis are on an annual basis.  Baseload capacity is 

modeled using characteristics representative of a pulverized coal plant, cycling capacity 

as a combined-cycle gas turbine unit, and peaking capacity as a combustion turbine unit.  

Per unit annualized capital costs of these technologies, as well as wind generation are 

shown below in Table 2.3.  These costs include annualized capital costs plus fixed 

operating and maintenance costs associated with generation.   

 

Table 2.3 Annualized Capital Costs and Variable Costs by Generation Typec 

Unit Vintage Generation Type Annualized Capital 
Cost (2010 $/MW/Yr) 

Variable Cost 
(2010 $/MWh) 

New Units    
 Baseload 542,277 25.34 
 Cycling 170,100 37.66 
 Peaking 110,353 62.26 
 Wind 403,430 0.00 
Existing Units    
 Baseload n.a. 24.65 
 Cycling n.a. 42.72 
 Peaking n.a. 67.27 
 Wind n.a. 0.00 

c Fixed costs for baseload, peaking, cycling and wind units are from Tables 3-3, 9-2, 6-2 and 21-2 
respectively, using Indiana specific costs (EIA, 2010).  Capital costs for Base Case Units are sunk costs and 
hence, not used in the analysis. Fuel costs are 2025 projections for the East North Central Region in the 
EIA 2011 Annual Energy Outlook (EIA, 2011).  Fuel prices are in 2010 dollars.  Variable O&M costs and 
plant characteristics for existing generation are from personal communication with the State Utility 
Forecasting Group (2010).  Variable costs for wind are treated as zero. 

 

2.2.4 Variable Cost Impact Calculations 

Variable costs were broken down by generation type and listed separately for new 

and existing capacity.  This further distinction is made because newer technologies are 

generally more efficient due to lower heat rates, resulting in lower variable costs.  Per 

unit variable costs are equal to per unit fuel costs plus per unit variable operations and 

maintenance costs.  These costs are displayed in Table 2.3.  Wind generation is assumed 

to have zero variable cost. 
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Total variable cost impacts for a given level of wind capacity were calculated 

relative to total variable costs by generation type without any wind generation.  For 

example, the impact for new baseload variable cost is calculated as the difference 

between energy supplied by new baseload capacity without wind versus energy supplied 

by new baseload capacity given a specific level of wind generation, multiplied by new 

baseload variable cost.  This calculation is performed for both new and base case units by 

type of generation and summed to arrive at the total impact.  This is the annual impact for 

the year 2025, and it is calculated based on the data for each of the three years and then 

averaged to get the expected impact.  

 

2.2.5 Modeling Scenarios 

 Four scenarios were chosen to show some key differences between adding wind at 

alternative locations in different regions.  The results of the four scenarios chosen will 

show that location from which wind power is sourced is important, but also that the 

proportion of the wind capacity from a particular location in the overall wind portfolio is 

important, as well.  The four scenarios modeled in order to further draw out these 

distinctions are: 1) scaling all power purchase agreements (PPAs) in proportion to their 

existing level, 2) scaling in-state PPAs in proportion to their existing levels while holding 

out-of-state PPAs constant, 3) scaling out-of-state PPAs in proportion to their existing 

levels while holding in-state PPAs constant, and 4) equally scaling all existing PPAs and 

the five sites in Indiana that are least correlated with the existing PPAs.  All four 

scenarios were scaled from a total of 770 MW of wind capacity to a total of 6,000 MW in 

steps of 500 MW (i.e. 770, 1,000, 1,500, …, 6,000). The capacities were scaled to the 

same level for each scenario, in order to make the scenarios comparable. 

 The first scenario scales all existing power purchase agreements in proportion to 

their existing levels.  This has the effect of adding more wind capacity at sites that 

currently have a higher level of wind capacity and less at sites that currently have a lower 

level of wind capacity.   For example, if two sites currently have 100 MW and 300 MW 

of wind capacity, then adding 100 MW of wind capacity will result in adding 25 MW at 

the 100 MW site and 75 MW at the 300 MW site.  If the sites that currently have the most 
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capacity are more likely to have wind additions than sites that currently have less 

capacity, then this scenario models that reality. 

 The second scenario scales all in-state wind sites proportionally in the same 

manner as the first scenario, while holding out-of-state sites at their existing levels.  The 

third scenario scales the out-of-state sites proportionally, while holding the in-state sites 

at existing wind capacity levels.  Scaling the first three scenarios in this way shows the 

impacts resulting from changes in proportions of in-state and out-of-state sites. 

 The last scenario is intended to show the benefits from additional geographic 

diversification of the wind portfolio.  Adding the five least correlated sites to the existing 

wind sites is intended to reduce the variability of the total wind portfolio.  Reducing this 

variability should decrease the capacity needs of other resources.  Instead of scaling all 

sites in proportion to their existing levels, the capacity levels of existing sites and five 

new sites are all increased equally in MW terms.  Since the scaling was done in a manner 

that did not hold the proportion of each site in the overall portfolio constant, impacts are 

the result of diversification and a changing portfolio make-up. 

 Again, these scenarios are intended to show the importance of location when 

choosing new wind sites and the portion each site comprises of the state’s overall wind 

portfolio.  The scenarios presented here are indicative of the likely impacts of adding 

wind PPAs from in-state, out-of-state, or both, as well as the fourth scenario that 

opportunistically selects sites that are least correlated with existing wind sites.  The next 

section will present the results of the analysis for these four scenarios. 

 

2.3 Results 

2.3.1 Scaling Existing PPA Scenario 

This section details the impacts of scaling wind capacities at the sites of all 

existing power purchase agreements in proportion to their existing levels.  Relative to 

2007 capacity levels, total resource needs from non-wind resources decrease with 

increasing wind capacity, as is shown in Figure 2.2.  However, there is a shift in the 

composition of resource needs with peaking capacity requirements increasing and 

baseload and cycling requirements decreasing with increasing wind capacity.  The 
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increase in peaking requirements as wind generation is added to the system is due to the 

increasing variation in the annual load net of wind generation profile.  Increasing levels 

of wind generation cause the load net of wind duration curve to become steeper resulting 

in increasing levels of peaking capacity to become cost effective relative to cycling and 

baseload capacity.  Beyond 2,500 MW of installed wind capacity new peaking capacity 

requirements begin to decrease as excess baseload and cycling capacity are dispatched as 

peaking capacity so as to avoid idling existing cycling and peaking capacity.   

 

 

Figure 2.2 Change in Capacity Requirements (Relative to Base Case Capacity Levels) 

 

The capacity planning stage results in no new baseload capacity being built as the 

cost curves for cycling and peaking capacity intersect well beyond 8,760 hours (the 

number of hours in a year).  In a similar manner to baseload and cycling offsetting 

peaking needs beyond 2,500 MW of installed wind capacity, existing baseload is 

reclassified as cycling beginning at zero megawatts of installed wind capacity, leading to 

reductions in the level of new cycling capacity requirements. 

Scaling wind capacity from the existing 770 MW to 6,000 MW, a net increase of 

5,230 MW, offsets only 849 MW of capacity requirements from other resources, 
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units decrease with increases in wind capacity.  As with capacity requirements, energy 

that is supplied by baseload and cycling units are reduced as wind capacity increases, 

while energy supplied by peaking generation increases as wind capacity increases up to 

about 2,500 MW and then declines slightly with further increases in wind capacity (see 

Figure 2.3).  Energy supplied by peaking capacity decreases beyond 2,500 MW of 

installed wind capacity due to the increases in energy supplied by existing cycling and 

baseload capacity which has been reclassified as peaking capacity.  Energy supplied by 

baseload and cycling generation decreases as wind penetration increases due to additions 

in wind capacity causing a steepening of the load duration curve.  Since additions in wind 

capacity are not able to offset non-wind resource needs on a one to one basis the system 

capacity factor declines (generation resources are less utilized).  The capacity factor is the 

ratio of how much electricity is generated given a particular level of capacity divided by 

the amount of electricity that could have been generated if the unit was operating at full 

capacity continuously, with a larger number representing more generation per unit of 

capacity. 

 

 

Figure 2.3 Change in Energy Requirements (Relative to 2025 with No Wind Generation) 
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Changes in annualized capital costs, in aggregate, increase with wind capacity.  

These costs are nearly completely driven by the capital costs of increasing wind capacity 

(see Figure 2.4).  Incremental capacity costs mirror the pattern in Figure 2.2.  No new 

baseload capacity is needed, so capital costs associated with baseload capacity are 

constant at all levels of wind capacity considered.  Cycling capacity costs decrease due to 

a reduction in required additions.  Capital costs associated with peaking capacity increase 

until about 2,500 MW of installed wind capacity and then decrease as existing baseload 

and cycling capacity is reclassified as peaking capacity.   

 

 

Figure 2.4 Change in Capital Costs (Relative to Base Case Capacity Levels) 

 

Increasing wind capacity results in substantial decreases in variable costs because 

variable costs associated with wind generation are treated as zero in this analysis (see 
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Figure 2.5 Change in Variable Costs (Relative to 2025 with No Wind Generation) 
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requirements impact represents total capacity needs, including existing capacity by 

resource in 2025 for a given level of wind capacity.  The energy impact is energy that 
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for capacity needs relative to existing capacity.    
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Table 2.4 Annual Capacity, Energy, and Costs for Alternative Wind Capacity Levels 

 
 
 
 
Impact Area 

 
 

Existing 
(2010)d 

Capacity 

 
0 MW  
Wind 

Capacity 
in 2025 

1,000 
MW  
Wind 

Capacity 
in 2025 

3,000 
MW  
Wind  

Capacity 
in 2025 

6,000 
MW 
Wind 

Capacity 
in 2025 

Capacity         
  Baseload (MW) 16,426 16,426 16,426 16,426 16,426 
  Cycling (MW) 2,500 3,375 3,000 2,500 2,500 
  Peaking (MW) 3,585 9,354 9,458 9,601 9,171 
  Total (MW) 22,511 29,155 28,884 28,527 28,097 
Energy      
  Baseload (GWh) - 126,226 125,136 122,228 116,109 
  Cycling (GWh) - 13,424 11,238 7,981 5,836 
  Peaking (GWh) - 4,718 4,803 4,585 3,275 
  Total (GWh) - 144,368 141,177 134,794 125,220 
Variable Cost      
  Baseload (million $) - 3,111 3,085 3,013 2,862 
  Cycling (million $) - 550 467 341 249 
  Peaking (million $) - 295 300 286 205 
  Total (million $) - 3,956 3,852 3,640 3,316 
Capital Coste      
  Baseload (million $) - 0 0 0 0 
  Cycling (million $) - 149 85 0 0 
  Peaking (million $) - 637 648 664 616 
  Wind (million $) - 0 403 1,210 2,421 
  Total (million $) - 786 1,136 1,874 3,037 

d The existing capacity column represents existing 2007 capacity levels adjusted for planned capacity 
changes.  Included in these planned capacity changes are certified, rate base eligible generation additions, 
retirements, and de-ratings due to pollution control retrofits.  Existing capacity is taken from the Indiana 
State Utility Forecasting Group (SUFG, 2009b).  
e  Capital costs are the differences in annualized capital costs relative to the base resource case. 

 

In order to determine what level of wind capacity is cost-effective, it is necessary 

to assess whether increases in capital costs are offset by decreases in variable costs.  As 

calculated above, capital costs are relative to base case capacity levels.  Comparing these 

capital cost increases to the reductions in variable costs would be inappropriate.  The 

appropriate comparison is between increases in capital costs in 2025 without wind 

capacity and reductions in variable costs in 2025 without wind capacity.  This 

comparison is analyzed in section 2.3.3. 
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2.3.2 Comparisons across Scenarios 

 This section compares the impacts of scaling up wind capacity across the four 

scenarios. The results show that while one scenario may result in a larger impact in one 

area, another may show a larger impact in another area. Also, while one scenario may 

result in the largest impact at a lower level of wind capacity another may show a larger 

impact at a higher level of wind capacity. This indicates that the locations of the wind 

capacity additions are important to the analysis. 

 At higher wind capacity levels, increasing all existing power purchase agreements 

by equal amounts while increasing the five least correlated sites by the same amount 

results in the largest reduction in the need for new non-wind generating capacity (see 

Figure 2.6).  By scaling all sites by equal amounts (MWs), all sites are moving from their 

initial levels towards each site representing an equal portion of the overall wind portfolio. 

The results show that this scenario is slightly superior to the scenario where all PPA sites 

are scaled proportionally, showing that a larger impact is achieved due to the additional 

geographic diversification. The scenario where only in-state sites are scaled causes the in-

state sites to dominate the portfolio at higher wind penetration levels. This negates some 

of the benefit from geographic diversification and is why this scenario results in the 

smallest impact on capacity requirements. The same reasoning explains the result for the 

scenario where only out-of-state sites are scaled.  Scaling in-state sites results in the 

largest increase in peaking capacity needs and the smallest reduction to total capacity 

needs. This is because the load duration curve for the in-state scenario becomes steeper, 

relative to the other scenarios, at higher levels of wind capacity. 
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Figure 2.6 Total Non-wind Capacity Requirements Across Scenarios in 2025 (Relative to 
Existing 2010 Capacity Levels) 

 

 As shown in Figure 2.7, total energy impacts are similar across scenarios. The 

scenario where only out-of-state sites are scaled results in the largest energy impact, but 

the differences between the cases is small in terms of the change in energy requirements. 

This scenario exhibits the largest impact because the out-of-state sites have slightly 

higher capacity factors than the in-state sites. As this scenario is scaled up, the out-of-

state sites make-up a larger portion of the overall wind portfolio. A larger capacity factor 

for the out-of-state sites means that a given level of wind capacity installed at an out-of-

state site will result in a larger energy reduction than the same level of capacity installed 

at an in-state site. While the out-of-state scenario has the highest energy impact, it was 

shown earlier that it has the second lowest impact on capacity. This is because the out-of-

state wind portfolio results in more wind generation, but during lower load periods, 

compared to the all PPA and PPA & 5 new sites scenarios.  While wind curtailment was 

allowed in the economic dispatch model wind generation was not curtailed under any 

scenario or wind capacity level, therefore all differences in the impacts on total energy 

are the result of differences in capacity factors at the various wind sites. 
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 Generally a wind site that is more highly correlated with load will have a larger 

impact on capacity, while a site with a larger capacity factor will result in a larger impact 

on energy, though this will not always be true. It would be possible for a site to have such 

a large capacity factor relative to another site that even if it was less correlated with load 

it could still lead to a larger capacity impact. This could happen if the capacity factor was 

sufficient to make the wind generation from the site higher during on-peak times despite 

being less correlated with load.  Another way a site that is highly correlated with load 

could result in a smaller reduction in capacity would be if this site had a single, rather 

anomalous hour with very low output, which happened to be a relatively high load hour. 

As this discussion has shown, the impact of the correlation between wind generation and 

load and the wind site capacity factor cannot be considered entirely separate from each 

other.  

 

 

Figure 2.7 Change in Energy Requirements Net of Wind Across Scenarios 

 

 Figure 2.8 shows that changes in capital costs are nearly identical across scenarios 

and are driven by the increase in capital costs from additional wind capacity. For all 
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incremental costs for installing wind capacity outweigh any other changes in capacity 

costs. The scenario where the capacity of PPA & 5 new sites are scaled proportionally 

results in the smallest increase in capital costs, a value of $3,011 million at 6,000 MW of 

wind capacity. It was shown earlier that the scenario where scaling existing PPA sites 

with the five least correlated sites resulted in the largest reduction in new capacity needs, 

therefore resulting in the smallest increase in capital costs.  It may not always be the case 

that the scenario that has the largest impact on capacity requirements will result in the 

smallest increase in capital costs because both the resource mix and peak load are 

affected.  While offsetting more capacity is generally better, it is also important to 

consider the type of unit the additional wind capacity is replacing. 

 

 

Figure 2.8 Change in Capital Costs Across Scenarios 
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by a baseload unit has a lower variable cost than one MWh supplied by a peaking unit.  

The first factor affects the energy impact, while both factors affect the variable cost 

impact. Thus, it is the change in composition of the generating units that makes the effect 

on variable costs different across scenarios while the effects on energy are quite similar. 

 

 

Figure 2.9 Change in Variable Costs Across Scenarios 

 

 These comparisons across scenarios highlight some key characteristics of wind 

generation.  First, while one scenario may result in the largest impact in one area (e.g. 

capacity, energy, or cost) it may not in another area. This means that it is important to 

define the ultimate goal of the wind capacity that is being added to the system. However 

as a general rule, it will usually be most advantageous to add wind capacity at sites with 

high capacity factors and high correlation with load. 

 

2.3.3 Cost-effectiveness of Additional Wind Capacity 

This section addresses the cost-effectiveness of alternative levels of wind 

capacity, taking into account the variable cost and capital cost estimates presented in the 

previous section, as well as a wind production subsidy and an additional cost for carbon 

emitting technologies.  As of July 2011, the Federal Production Tax Credit provided a 
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wind energy production subsidy of 22 $/MWh.  The wind production subsidy was not 

included in calculations to this point in the analysis because its existence and level in 

2025 is uncertain.     

Another important factor in determining the cost effectiveness of wind capacity 

additions relates to the value of reductions in carbon emissions.  The carbon prices 

considered in this section were derived from the Bingaman bill proposed in the U.S. 

Senate (Bingaman, 2011).  The bill proposes a price ceiling of $25/ton and a price floor 

of $10/ton for calendar year 2012, which were discounted to 2010 levels for this analysis.  

The price ceiling will increase each year by five percent in real terms.  The carbon price 

ceiling of $25/ton in 2012, increasing at a rate of five percent per year in real terms, will 

result in a ceiling of 44.13 (2010 $)/ton in 2025.  Similarly, the price floor will increase at 

a rate equal to three percent per year in real terms.  This yields a carbon price floor of 10 

(2010 $)/ton in 2012 that rises to 13.75 (2010 $)/ton by 2025.  For modeling purposes, 

these low and high carbon prices were converted to dollars per megawatt hour based on 

heat rate, fuel type, and carbon emissions of the fuel, and are listed below in Table 2.5.   

 

Table 2.5 Carbon Price by Type of Generation 

 
Capacity Type 

Low Carbon Price 
(2010 $/MWh) 

High Carbon Price 
(2010 $/MWh) 

New Capacity   
Baseload 15.47 49.65 
Cycling 5.19 16.65 
Peaking 7.86 25.24 
Base Case Capacity   
Baseload 16.17 51.90 
Cycling 6.31 20.24 
Peaking 9.66 31.01 

 

Baseload generation is modeled using the characteristics of a pulverized coal unit, 

which emits the highest levels of carbon dioxide.  Cycling units, modeled using natural 

gas fired combined cycle technology, emit the lowest levels of carbon dioxide among the 

fossil fuel technologies.  Cycling units have the lowest emission levels because this type 

of generation combines a gas turbine and steam turbine, where the exhaust heat from 
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powering the gas turbine is then used to power the steam turbine, resulting in highly 

efficient generation.  This highly efficient generation of combined cycle units uses less 

natural gas per MWh and ultimately emits less carbon dioxide per MWh.  Peaking units 

are modeled as combustion turbine units, resulting in emissions per MWh between 

baseload and cycling units.  

The optimal level of wind capacity is defined here as the capacity where the total 

cost of serving the load in 2025 with wind is lowest.  For purposes of calculating the 

optimal level of wind capacity, the capacity cost impact is calculated relative to 2025 

capacity requirements without any wind.  (In previous sections, capacity impacts were 

calculated relative to base case capacity levels.)  The goal in this section is to determine 

the optimal level of wind capacity in 2025, making the 2025 total cost without wind the 

relevant basis for comparison.  Figure 2.10 below shows the impact on total costs from 

increasing wind capacity, without the inclusion of a production subsidy or carbon price.  

The decreases in variable costs are not able to offset the larger increases in capital costs at 

any level of wind capacity.  Total costs from wind generation are always higher than in 

the no wind case.  In terms of the optimal level of wind, zero wind capacity is optimal.  In 

general, this answer may change in the presence of production subsidies or carbon costs.     
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Figure 2.10 Breakdown of Cost Changes Across Levels of Wind Capacity Relative to No 
Wind (without Production Subsidy or Carbon Cost) 

 

Including the wind production subsidy and/or the carbon prices makes wind more 

cost effective.  Since both the production subsidy and the carbon price are in terms of 

dollars per unit of electricity generated, they will lead to further reductions in total 

variable costs with increases in wind generation and may alter the optimal mix of 

generation capacity.  The impact on total cost is shown below in Figure 2.11 for all 

possible combinations of the wind production subsidy of 22 dollars per MWh and the 

high and low levels for the carbon price.  While the wind production subsidy and carbon 

price both impact total system variable costs, the carbon price will also impact the 

optimal capacity mix of non-wind generation resources.  The carbon price increases 

variable costs for the non-wind generation resources and has the effect of altering the 

intersection points of the breakeven cost curve used to determine the least cost generation 

capacity resource mix.  Since no new baseload is added without considering the carbon 

price no new baseload capacity will be added to the mix when a carbon price is 

considered since the carbon price acts to increase the variable costs for baseload 

generation more than for other resources.  The carbon price will tend to lead to a smaller 

increase in variable costs for cycling capacity as compared to variable costs for peaking 
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capacity, therefore increasing the optimal level of cycling capacity relative to peaking 

capacity.   

 

 

Figure 2.11 Breakdown of Cost Changes Relative to No Wind with Subsidy and Carbon 
Cost Alternatives 

 

Total costs increase under all combinations of the subsidy and carbon price with 

any amount of wind capacity added to the system.  In other words, zero wind capacity is 

optimal under all scenarios considered in this section.  Capital costs increase faster than 

variable costs decline at all levels of wind capacity.  The reduction in variable cost due to 

increases in wind generation is not able to offset the increases in capital costs even when 

the combination of the subsidy and high carbon price act to increase the reduction in 

variable costs.  As no new baseload capacity is needed no matter what level of wind 

capacity is added to the system, additional wind capacity does not lead to reductions in 

baseload costs.  (This result is driven in part by the initial capacity situation in Indiana 

which is relatively heavy on baseload and light on peaking.  The results may be different 

in other study areas.)  Although, additional wind capacity does lead to large reductions in 

cycling capacity needs and costs and increases in peaking capacity needs and costs. 
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Table 2.6 shows the impacts of various levels of wind capacity on 2025 average 

retail rates for all combinations of the subsidy and carbon prices.  The values in this table 

are calculated by dividing the total cost quantities used in Figure 2.11 by 2025 projected 

retail energy sales of 144,495 GWh.  For purposes of comparison, average Indiana retail 

rates in 2008 were 7.09 cents/kWh expressed in 2010 dollars.  Thus, the 1,000 MW wind 

scenario with the federal subsidy and no CO2 costs represents a 1.7 percent increase in 

rates from their present level.  As shown earlier, all combinations of subsidy and carbon 

price increase total cost and ultimately rates above the no wind case. 

 

Table 2.6 Wind Capacity’s Impact on Retail Rates in 2025 Under Various Scenarios 
(2010 dollars) 

 
Program 

1,000 MW Wind 
(cents/kWh) 

3,000 MW Wind 
(cents/kWh) 

6,000 MW Wind 
(cents/kWh) 

Subsidy 0.12 0.39 0.82 
Low CO2 0.15 0.47 0.97 
High CO2 0.12 0.36 0.71 
Subsidy & Low CO2 0.10 0.33 0.68 
Subsidy & High CO2 0.07 0.22 0.42 

 

2.4Conclusions 

The primary distinguishing factor between wind generation and other forms of 

generation is the intermittency in output from wind generation. Since wind generation is 

not easily controlled, an important consideration is the relationship wind generation 

exhibits relative to load. Indiana’s existing wind generation exhibits a strong negative 

correlation with Indiana load, and this relationship directly affects resource requirements 

for other forms of generation. Generally, though it is not always the case, a stronger 

negative correlation will lead to an increase in needs for peaking capacity because wind 

generation will typically not be available at full capacity during peak demand. The 

capacity factor of the wind will also have an effect on other resource needs. 

 This leads to the next important characteristic of a wind site.  The capacity factor 

is the ratio of how much electricity is generated given a particular level of capacity 

divided by the amount of electricity that could have been generated if the unit was 
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operating at full capacity continuously, thus a larger number represents more generation 

per unit of capacity.  For the purpose of this paper the capacity factor indicates how much 

a given level of wind capacity will be able to reduce generation needs from other 

resources, with a higher factor reducing other resource needs by a larger amount.  In 

addition to energy requirements, a higher capacity factor can affect capacity 

requirements, as well.  Given two sites exhibiting the same correlation with load, the site 

with a higher capacity factor will typically be generating more electricity during the 

annual peak, which will have a direct effect on capacity requirements. In summary, when 

considering the addition of wind resources, sites that are more closely correlated with 

load and exhibit a higher capacity factor will generally lead to the largest reduction in 

capacity and energy needs from other generation resources. 

 Total costs increase with wind capacity because reductions in variable costs from 

additional wind capacity are not sufficient to offset the increases in capital costs for all 

scenarios. The results of the model showed that for all wind expansion scenarios, wind 

capacity is not cost-effective regardless of the level of the wind production tax credit and 

carbon prices that were considered.  Since no positive level of wind capacity was deemed 

cost-effective, any level of positive wind capacity will lead to increases in retail rates, 

although these increases (sometimes small in percentage terms) may be determined by 

policymakers to be an acceptable price to pay to foster wind power development.   

Results may be affected by the existing mix of generation resources in Indiana.  A state 

with a higher fraction of peaking capacity may be more suitable for siting wind capacity 

because the peaking units can be used to compensate for wind intermittency.  While not 

considered in this paper, decommissioning existing generation capacity may be a viable 

option for older units.  Wind expansion scenarios that consider alternative placement of 

wind capacity may result in wind generation looking more economically attractive.  

Other technologies to aid wind generation were not considered in this paper. For 

example, some form of energy storage could potentially make wind generation more 

cost-effective by shifting energy generated from wind from lower value, off-peak periods 

to higher value, on-peak periods, resulting in a larger reduction in capacity needs from 

non-wind generation sources.   
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CHAPTER 3: MODIFIED UNIT COMMITMENT IN RESPONSE TO WIND 

FORECASTING ERRORS 

3.1 Introduction and Literature Review 

The variable and intermittent nature of wind generation poses a number of 

challenges spanning many areas of electricity markets, with none more front and center 

than accurately forecasting this highly variable energy source.  Forecasting wind power 

generation is difficult; historically weather models were not designed to predict wind 

speeds on the time scale required to accurately predict wind generation – which would 

ideally be hours, or even a day, in advance and a time scale of minutes.  Forecasts are 

able to predict there will be a storm tomorrow and this will have a dramatic impact on the 

variability of wind generation, but exactly what time of day a ramp event will occur is 

difficult to predict (Burr, 2010).  It is this inability to predict exactly when sudden 

changes in wind generation will occur that poses many challenges for schedulers and 

system operators.   

While wind generation is not the only source of uncertainty in an electric system 

(unit outages and load are also uncertain), the degree of uncertainty is dramatically higher 

for wind generation.  For instance, load forecast errors typically range from 1 to 4 

percent, while forecasting errors for wind generation are on the order of 12 to 20 percent 

(Burr, 2010).  Impacts of forced outages are likewise large, but very infrequent relative to 

wind fluctuations.  Errors of this magnitude can have significant effects on real-time 

electricity market operations.  Many papers have developed methods to mitigate the 

adverse effects of wind generation uncertainty on both the unit commitment (UC) and 

economic dispatch (ED) operational stages (Ummels et al., 2007; Bouffard and Galiana, 

2008; Wang, Shahidehpour, and Zuyi, 2008; Tuohy et al., 2009; Wang et al., 2009; Wang 

et al., 2011).  The unit commitment stage is considered the strategic resource deployment 
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planning stage and considers information on expected system conditions, such as the 

level of load and wind generation.  In this stage generating units are committed for each 

hour of a future operating day.  On the other hand, economic dispatch takes place five to 

thirty minutes before real-time operations, where the actual realization of uncertain 

variables, such as load and wind generation occurs.  Forecasts, especially for wind 

generation, can change dramatically between the UC and ED stages; as more accurate 

wind forecasts become available closer to the economic dispatch stage.  There are two 

ways to handle wind generation uncertainty in the UC stage: 1) reserve requirements (i.e., 

spinning reserve) 2) stochastic programming (Ruiz et al., 2009).  Stochastic programming 

has been shown to be an effective method to deal with wind forecasting uncertainty in the 

UC-ED program (Wang et al., 2009; Tuohy et al., 2009).   

Tuohy et al. (2009) compare the results of a stochastic UC-ED model to two 

deterministic models: one using a perfect wind forecast for the UC stage and the other 

using the expected value of the wind forecast.  As expected, the deterministic model 

which used the perfect wind forecast results in the lowest system costs; while the 

stochastic model shows higher system costs than the deterministic model with the perfect 

forecast, but lower costs than the deterministic model using the expected value of wind 

generation.  The two models which did not use the perfect forecast resulted in costs 1.1 % 

and 1.7% higher for the stochastic and deterministic models, respectively, due to more 

frequent unit startups and more frequent use of higher cost peaking units.  The stochastic 

optimization resulted in more frequent startups of lower cost units than the deterministic 

model with the imperfect forecast.  The deterministic model which used the imperfect 

forecast had to use more quick start, higher cost peaking units to cope with unexpected 

changes in wind generation.  By considering more possible wind scenarios the stochastic 

unit commitment program was better able to plan for the uncertain wind level by bringing 

on units with longer start times, which were lower cost.  Their model did allow for wind 

curtailment when doing so resulted in a reduction to system costs.  Wang, Shahidehpour,  

and Zuyi (2008) terms the day-ahead UC stage as the stage where preventative actions 

are taken, while the real-time ED stage is the stage where corrective actions take place.  

The stochastic program generally results in lower system costs by taking preventative 
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actions to handle unforeseen variations in wind generation, usually by scheduling 

increased levels of ramping capability.   

Wind site location can significantly impact which units respond to ramping 

associated with fluctuations in wind generation and may impact system costs.  Including 

the transmission network in the UC-ED simulation plays an important role in determining 

the optimal planning of the UC and ED stages by considering potential transmission 

constraints, and may alter which units should respond to variations in wind generation.  

While many papers do not consider the transmission network (Ummels et al., 2007; 

Bouffard and Galiana, 2008; Wang et. al., 2009; Wang et al., 2011), Wang, 

Shahidehpour, and Zuyi (2008) showed the impact on both the UC and ED stages (and 

ultimately locational marginal prices or LMPs) are a direct result of the location of the 

wind site within the transmission network.  The results of their paper concluded that 

LMP’s changed markedly based on the location of the wind site within the transmission 

network.  A paper by Mount and Lamadrid (2010) explicitly includes costs for ramping 

and shows that the variability of wind generation causes ramping costs to increase to a 

larger extent with the inclusion of the transmission network.  This increase in costs is due 

to the transmission network restricting which units are able to respond to changes in wind 

generation, and further emphasizes the importance of including the transmission network 

in the UC-ED model.   

While switching from a deterministic to a stochastic UC-ED model to handle 

wind generation uncertainty shows improvements in terms of lower system costs, this 

improvement comes at the expense of a marked increase in computational burden.  

Multiple papers note the dramatic increase in computation time (Bouffard and Galiana,  

2008; Ruiz et al., 2009; Tuohy et al., 2009).  The models used in a paper by Tuohy et al. 

(2009) resulted in computation times of approximately eight days for the stochastic 

program versus three hours for the deterministic program, using a perfect wind forecast 

for the deterministic program.  Bouffard and Galiana (2008) notes, “…any practical 

implementation would require further investigation into the application of scenario 

reduction techniques.”   Ruiz et al. (2009) showed computation time increased by one to 
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three orders of magnitude when going from the deterministic to the various stochastic 

programs considered in their paper. 

In response to the large increase in computing time for stochastic programs 

several papers have proposed approximations to the full stochastic problem (Chen, 2008; 

Bouffard and Galiana, 2008).  Chen (2008) uses a branch and bound technique to reduce 

the number of states to be examined in the unit commitment stage and implement a direct 

search method during economic dispatch to further reduce computation time.  Bouffard 

and Galiana (2008) suggest using a solver preprocessor to reduce computation time.  In 

their example the use of a mixed-integer linear programming solver preprocessor reduces 

the number of constraints by more than half. 

The previous discussion concludes that stochastic UC-ED models are generally 

superior to deterministic models, but at the expense of increased computational time 

required to solve the stochastic model.  This paper presents a modified stochastic UC-ED 

methodology which approaches the optimal solution achieved by the full stochastic 

framework while dramatically reducing the size of the full stochastic problem.  In this 

paper a modified stochastic methodology is developed and compared to both 

deterministic and stochastic UC-ED models using a small four bus test system and a 

larger fourteen bus system that includes forecast error distributions derived from ISO 

market data.     

 

3.2 Methodology 

 While the previous literature discussion highlights the potential benefits of using a 

stochastic model over a deterministic model, the significant increase in computational 

burden limits their use in practice.  The model developed in this research is intended to 

capture a large portion of the benefits of stochastic optimization, while dramatically 

reducing the size of the full stochastic program and ultimately the computational burden.  

This model reduces the size of the full stochastic problem by focusing on the key 

transmission lines, which dramatically restrict the responses by other generators to 

variations in wind generation.  Focusing the optimization on a small subset of 



 39

transmission lines in the system dramatically reduces the number of constraints and 

variables, as compared to the full stochastic model.    

An unexpected surge or drop in wind generation can significantly impact system 

costs, particularly when a transmission line that is located in close proximity to the wind 

site is constrained.  In order to relieve congestion on the line either wind output will need 

to be curtailed, in the case of a wind surge, or other generating units, which impact the 

same transmission line, will need to alter their output to compensate for the unexpected 

wind shock.  Stochastic unit commitment models lead to lower expected system costs by 

increasing the number of startups and generation for units with lower startup costs and 

higher variable costs, while reducing the number of unit startups for baseload units with 

lower variable costs, but higher startup costs (Tuohy et al., 2009).  A stochastic UC-ED 

model minimizes expected system costs by balancing the tradeoff between committing a 

more expensive unit in the UC stage in the expectation that it will lead to lower system 

costs in the ED stage. 

 The unit commitment-economic dispatch is a two stage decision problem, shown 

below in Figure 3.1.  Both the deterministic and stochastic optimization problems reflect 

a single optimization over both periods, but the deterministic optimization only considers 

one possible state for the level of wind generation in Stage 2.  By only considering one 

possible realization of the wind generation level, the deterministic UC-ED problem does 

not account for the uncertainty associated with wind generation and will likely lead to a 

unit commitment that differs from the stochastic problem.   

 

 

Figure 3.1 Two-stage Unit Commitment, Economic Dispatch Decision Layout 
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The formulation for the deterministic UC-ED problem is shown below in (1) 

through (4), with parameter and variable descriptions in Table 3.1.  Units are committed 

in stage one considering a single realization for the wind generation in stage two.  The 

problem minimizes the cost (1) of satisfying demand (2) subject to transmission 

constraints (3) and unit generation limits in (4).  In contrast to the deterministic model, 

the stochastic problem, shown in (5) through (9c), minimizes the expected cost (5) of 

satisfying demand (6a,b) subject to transmission, unit ramping and unit generation 

constraints (7a)-(9c) for each state ‘s’.  The upper and lower bounds on the level of wind 

generation for each state are shown in (9c).   Parameter and variable descriptions for the 

full stochastic model are shown in Table 3.2.            

 min೔ீబ ෍ ௜ܲܩ௜                                                                  ሺ1ሻ௜  

෍ ௜௜ܩ െ ෍ ௕௕ܦ ൌ 0                                                            ሺ2ሻ 

െ ௟ܶ ൑ ෍ ௜௜ܩ௜,௟ܨ െ ෍ ௕௕ܦ௕,௟ܧ ൑ ௟ܶ     ׊ ݈                                           ሺ3ሻ 

௜௠௜௡ܩ ൑ ௜ܩ ൑  ሺ4ሻ1                                                      ݅ ׊     ௜௠௔௫ܩ

 

 

 

 

 

 

 

 

 

 
                                                            
1 For purposes of this research lower bounds on generating units are set at zero MW.   If a unit has a 
positive lower bound on generation, then a binary variable would be required to signify if the generating 
unit is committed.  Binary variables would also be required on constraints 9a,b,c of the full stochastic 
problem and 14 and 15a,b of the modified stochastic problem. 
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Table 3.1 Parameters and Variables for Deterministic Formulation 

Notation Definition ݅ index over generating units ܾ index over loads ݈ index over lines ௜ܲ offer price of unit i ܩ௜ generation level of unit i in unit commitment stage ܩ௜௠௜௡ minimum generation of unit i ܩ௜௠௔௫ maximum generation of unit i ܨ௜,௟ power transfer distribution factor for unit i on line l ܧ௕,௟ power transfer distribution factor for load b on line l ௟ܶ transmission capacity of line l ܦ௕ load b 

 min೔ீబ, ೔ீ,ೞభ ෍  ௜ܲ ൭ܩ௜଴ ൅ ෍ ௜,௦ଵ௦ܩ௦ݎܲ ൱௜                                              ሺ5ሻ 

෍ ௜଴௜ܩ െ ෍ ௕௕ܦ ൌ 0                                                     ሺ6ܽሻ 

෍ ௜,௦ଵ௜ܩ െ ෍ ௕௕ܦ ൌ  ሺ6ܾሻ                                                 ݏ ׊     0

െ ௟ܶ ൑ ෍ ௜଴௜ܩ௜,௟ܨ െ ෍ ௕௕ܦ௕,௟ܧ ൑ ௟ܶ     ׊ ݈                                         ሺ7ܽሻ 

െ ௟ܶ ൑ ෍ ௜,௦ଵ௜ܩ௜,௟ܨ െ ෍ ௕௕ܦ௕,௟ܧ ൑ ௟ܶ     ׊ ݈,  ሺ7ܾሻ                                      ݏ

ܴ௜ௗ௢௪௡ ൑ ௜,௦ଵܩ െ ௜଴ܩ ൑ ܴ௜௨௣     ׊ ݅, ௜௠௜௡ܩ ሺ8ሻ                                               ݏ ൑ ௜଴ܩ ൑ ௞௠௜௡ܩ ሺ9ܽሻ                                                    ݅ ׊     ௜௠௔௫ܩ ൑ ௞,௦ଵܩ ൑ ,݇ ׊     ௞௠௔௫ܩ ௝௠௜௡ܩ ሺ9ܾሻ                                                  ݏ ൑ ௝,௦ଵܩ ൑ ௝଴ܩ ൅ ௝ܹ,௦௘௥௥     ׊ ݆,  ሺ9ܿሻ                                               ݏ
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Table 3.2 Parameters and Variables for Stochastic Formulation 

Notation Definition ݅ index over all generating units ݆ index over wind generating units as a subset of i ݇ index over non-wind generating units as a subset of i ܾ index over loads ݈ index over lines ݏ index over wind generation forecast error states ܲݎ௦ probability of state s ௜ܲ offer price of unit i ܩ௜଴ unit commitment generation level of unit i ܩ௜,௦ଵ  economic dispatch generation level of unit i in state s ܩ௜௠௜௡ minimum generation of unit i ܩ௜௠௔௫ maximum generation of unit i ܨ௜,௟ power transfer distribution factor for unit i on line l ܧ௕,௟ power transfer distribution factor for load b on line l ௟ܶ transmission capacity of line l ܦ௕ load b ܴ௜௨௣ upward ramping capability of unit i ܴ௜ௗ௢௪௡ downward ramping capability of unit i ௝ܹ,௦௘௥௥ wind forecasting error for wind site j in state s 

 

As can be seen in a comparison of the formulations, considering multiple states in 

the stochastic problem dramatically increases the number of variables and constraints.  

The previous section highlighted the potential gains from considering multiple wind 

generation states, so a method which is able to capture the benefits of the stochastic 

optimization while reducing the size of the problem would be very beneficial to both 

system planners and operators.  The modified formulation, shown below in (10) through 

(15b), is carried out in addition to the deterministic optimization.  Table 3.3 shows 

parameter and variable descriptions for the modified stochastic formulation.  The optimal 

unit commitment levels ሺܩ௜ሻ are treated as fixed parameters in the modified stochastic 

problem.  Also, the set of binding transmission lines from the deterministic problem are 

indexed by m and are a subset of all the lines in the system, which is indexed by l.     
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min஽ீ೔,ு೔,ೞ ෍ ௜ܲ ൭ܩܦ௜ ൅ ෍ ௜,௦௦ܪ௦ݎܲ ൱௜                                            ሺ10ሻ 

෍ ௜௜ܩܦ ൌ 0                                                                      ሺ11ሻ 

෍ ௜,௦௜ܪ ൌ  ሺ12ሻ                                                           ݏ ׊     0

െ ௠ܶ ൑ ෍ ௜ܩܦ௜,௠ሺܨ ൅ ௜ሻܩ െ ෍ ௕௕ܦ௕,௠ܧ ൑௜ ௠ܶ    ݉׊                            ሺ13ܽሻ 

െ ௠ܶ ൑ ෍ ௜ܩ௜,௠൫ܨ ൅ ௜ܩܦ ൅ ௜,௦൯௜ܪ െ ෍ ௕௕ܦ௕,௠ܧ ൑ ௠ܶ     ׊ ݉,  ሺ13ܾሻ                  ݏ

௜௠௜௡ܩ ൑ ௜ܩ ൅ ௜ܩܦ ൑ ሺ14ሻ                                           max                                            ݅ ׊     ௜௠௔௫ܩ ቀܴ௞ௗ௢௪௡, െ൫ܩ௞ ൅ ௞ܩܦ െ ௞௠௜௡൯ቁܩ ൑ ௞,௦ܪ                                          ൑ min൫ܴ௞௨௣, ௞௠௔௫ܩ െ ௞ܩ െ ,݇ ׊    ௞൯ܩܦ ሺ15ܽሻ max                                                  ݏ ቀ ௝ܴௗ௢௪௡, െ൫ܩ௝ ൅ ௝ܩܦ െ ௝௠௜௡൯ቁܩ ൑ ௝,௦                          ൑ܪ min൫ ௝ܴ௨௣, ௝௠௔௫ܩ ൅ ௝ܹ,௦௘௥௥ െ ௝ܩ െ ,݆ ׊     ௝൯ܩܦ  ሺ15ܾሻ                                      ݏ
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Table 3.3 Parameters and Variables for Modified Stochastic Formulation 

Notation Definition ݅ index over generating units ݆ index over wind generating units as a subset of i ݇ index over non-wind generating units as a subset of i ܾ index over loads ݈ index over lines ݉ index over lines considered in modified problem as a subset of l ݏ index over wind generation error states ܲݎ௦ probability of state s ௜ܲ offer price of unit i ܩܦ௜ modification to deterministic dispatch in UC period for unit i ܪ௜,௦ response of  unit i in state s to wind error in state s ܩ௜ optimal unit commitment generation level of unit i from 
deterministic problem (a constant in this problem) ܩ௜௠௜௡ minimum generation of unit i ܩ௜௠௔௫ maximum generation of unit i ܨ௜,௟ power transfer distribution factor for unit i on line l ܧ௕,௟ power transfer distribution factor for load b on line l ௟ܶ transmission capacity of line l ܦ௕ demand at bus b ܴ௜௨௣ upward ramping capability of unit i ܴ௜ௗ௢௪௡ downward ramping capability of unit i ௝ܹ,௦௘௥௥ wind forecasting error for wind site j in state s 

 

The modified formulation considers the same wind generation states as the full 

stochastic problem, while greatly reducing the number of variables and constraints by 

focusing on the portion of the transmission network where the impact of the wind 

generation is most pronounced.  The objective (10) of the modified problem minimizes 

the expected cost of accounting for the uncertainty surrounding the wind generation level 

by altering the deterministic UC generation levels through the ܩܦ௜ variables for each 

generation unit.  The constraints on the ܪ௜,௦ variables ensure that the ramping capabilities 

of the generating units are sufficient to handle all wind states considered in the problem.  

The objective mimics the objective of the stochastic UC problem, but the number of 

variables and constraints are dramatically reduced in (11)-(15b).  In (11), the ܩܦ௜’s must 

sum to zero in order for the energy balance equality (2) to remain satisfied, since it was 

satisfied in the deterministic UC problem.  Similarly, (12) satisfies the energy balance in 
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(6b) for every state of wind forecasting error.  Constraints (13a) and (13b) are included to 

ensure that the constraints for the constrained (or nearly constrained) lines are not 

violated in either the UC or ED stages by altering the deterministic UC problem.  The ܩܦ௜ variables are restricted by the initial deterministic dispatch levels (ܣ௜) and the units’ 

maximum and minimum capacity in (14).  Similarly, the ܪ௜,௦ variables are restricted by 

their ramping capability and the difference between their generation levels and their 

maximum or minimum capacity in (15a,b). 

Constraint (15a) shows that by altering the ܩܦ௜ variables the ranges for the ܪ௜,௦ 

variables are altered, as well.  As noted earlier, the modified formulation accounts for the 

wind uncertainty through the various wind states, while largely reducing the size of the 

problem by ignoring transmission lines which are not constrained (or nearly constrained).  

Constraint (15b) restricts the response of the wind site and allows for wind curtailment 

when curtailment of wind generation is optimal.   

 While the modified stochastic program focuses on the constrained line, it is 

important to ensure that the optimal generation levels do not violate any of the other 

constraints in the transmission system.  These constraints can be checked after the fact 

using (16) and (17) for each line not considered in the modified problem.  If the modified 

UC or ED dispatch levels violate any of the transmission line constraints then these lines 

are added to the modified stochastic program and the program is recomputed.  A 

flowchart (shown in figure 3.2) shows the process of checking and recalculating (if 

necessary) the modified stochastic model.  As the flowchart shows, the deterministic UC 

model is calculated and any constrained (or nearly constrained) lines are determined.  The 

modified stochastic model is calculated using these constrained lines and unit 

commitment generation levels from the deterministic UC model, then the solution 

generation levels are used to determine if any other transmission line constraints are 

violated; if so, these lines are added to the modified stochastic UC model and the problem 

is resolved.  If none of the other line constraints are violated, then the process is complete 

and these are the unit commitment generation levels from the modified problem.  For 

larger networks, it may be possible to reduce the set of lines which need to be checked for 

violations.  Lines far from the constrained line (i.e., lines for which the wind site has 
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YES 

NO 

small power transfer distribution factors (PTDFs)) may not need to be considered, since 

the generators responding to the wind generation deviation are likely to have a negligible 

effect on these lines, as well.  Power transfer distribution factors are a measure of the 

sensitivity of power flow on a line resulting from an injection by a generator or 

withdrawal by a load.  A PTDF with a larger absolute magnitude indicates power flow on 

a line is more sensitive to an injection or withdrawal from a generator or load.  Further 

study is required to determine what the characteristics are for a sufficiently distant line to 

have a negligible effect on the problem.   

௟ݓ݋݈ܨ_݁݊݅ܮ  ൌ ෍ ௜,௟ܨ ௜כ ሺܣ௜ ൅ ௜ሻܩܦ െ ෍ ௕,௟ܧ כ ௕  ௕ܦ  ሺ16ሻ                           ݈ ׊  

௟,௦ݓ݋݈ܨ_݁݊݅ܮ ൌ ෍ ௜,௟ܨ כ ሺܣ௜ ൅ ௜ܩܦ ൅ ௜,௦ሻ௜ܪ െ ෍ ௕,௟ܧ כ ௕ ௕ܦ ,݈ ׊     ሺ17ሻ                   ݏ

 

 

 

Figure 3.2 Modified Stochastic Unit Commitment Solution Approach 
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3.3 Results 

3.3.1 Results of Four Bus Test System 

The following example illustrates the potential benefits of using the modified 

stochastic problem relative to the deterministic problem in terms of expected cost and 

over the full stochastic program in terms of computational complexity.  The test system 

(shown in figure 3.3) is a four bus model with five generating units, one of which is a 

wind unit (G2), and two loads located at buses B2 and B3.  Parameter values for the 

system are shown in tables 3.4 and 3.5. 

 

 

Figure 3.3 Four Bus Test System with Wind Site 

 

  



 48

Table 3.4 Test System Generator, Load and Line Parameters 

Generator Offers 

Generator 
Price 

($/MWh) 
Capacity 

(MW) 
Ramp Limits 
(MW/period) 

G1 30 500 5 
G2 1 100 0 
G3 150 400 15 
G4 25 150 16 
G5 40 100 30 

Load 

Load 
Load 

(MWh) 
L1 253 
L2 100 

Line Capacity  

Line 
Capacity 

(MW) 
1 150 
2 150 
3 146 
4 110 
5 100 
  

 

Table 3.5 Test System Power Transmission Distribution Factors (PTDFs) 

 Line 
Bus 1 2 3 4 5 

1 0.2829 0.1405 0.1767 -0.0233 -0.0829 
2 0.1100 -0.0648 -0.4452 0.3548 0.0900 
3 -0.0728 -0.2818 -0.0454 -0.2454 0.2728 
4 -0.6029 0.0656 0.1373 -0.0627 -0.1971 

 

The wind unit (G2) and a low cost baseload unit (G1) are located at bus one (B1) 

and another low cost unit (G4) is located at bus three (B3).  These units have more than 

enough capacity to satisfy the 253 MWhs of load.  Unit G3 is the most expensive unit in 

the test system, therefore this unit would ideally be used as little as possible.  Under the 
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deterministic unit commitment model, line three is the only constrained line in the system 

(shown in table 3.6) and therefore it is the only line included in the first iteration of the 

modified stochastic model.   

As can be seen in table 3.5, 17.67% of the generation from the wind site (located 

at bus one) flows onto line 3.  A negatively signed PTDF indicates power flow in the 

opposite direction.  For example, injections at bus 1 and bus 3 would result in power 

flowing on line 1 in opposite directions, due to these buses having PTDFs of opposite 

sign for this line.  Therefore, transmission lines can bind in either direction and line flows 

are restricted to be between plus and minus line capacity.  Since line three is already at 

capacity in the deterministic model any increase in wind generation will need to be met 

by a reduction in generation for a unit with a PTDF of the same sign as the wind site for 

line three, an increase in generation for a unit with a negative PTDF for line three, or the 

wind will need to be curtailed.  In this test system, a reduction in wind generation does 

not have the adverse effect that an increase has, as a reduction does not increase the flow 

on line three in the binding direction.  A reduction in wind generation actually causes the 

constraint to become non-binding.  It is along this line of reasoning that focusing on 

positive wind deviations makes sense for this test system.  If transmission line three were 

constrained in the other direction, then a decrease in wind generation would be 

problematic and the modified problem would focus on unexpected decreases in wind 

generation. 

 

Table 3.6 Line Flow During the Unit Commitment Period for the Three Programs 

Line (Line Capacity) 

Program 
1 

(150 MW) 
2 

(150 MW) 
3 

(146 MW) 
4 

(110 MW) 
5 

(100 MW) 

Deterministic 25.89 30.75 146.00 -106.62 -25.89 
Modified Stochastic 16.64 30.38 146.00 -107.00 -27.51 
Full Stochastic 24.23 28.77 140.01 -102.98 -24.23 

 

The test system uses a positive wind surge, which for purposes of illustration is 

uniformly distributed over the interval zero to fifteen MWs, therefore the probability of 
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each state is equal to one over the number of states or 
ଵௌ (0.01 in this analysis as there are 

100 wind states).  An unexpected surge in wind generation equal to the upper bound of 

fifteen MWs is fifteen percent of the wind site’s expected output of 100 MW, therefore 

falling in the reasonable range of twelve to twenty percent mentioned in Burr (2010).  

The deterministic model does not account for the potential wind deviation from forecast 

and therefore results in the highest expected cost (shown in table 3.7).  Both the modified 

and full stochastic models result in equal expected cost, which is lower than the 

deterministic model.  The stochastic models are able to achieve a lower expected cost by 

altering the generation levels in the unit commitment stage, although these two models 

commit units at different levels.   

Both stochastic models reduce the output from generator G1 and increase the 

commitment levels of G3 and G5 for the full stochastic and modified stochastic models, 

respectively (shown in table 3.8).  While the two stochastic models arrive at different 

solutions for the unit commitment stage, they result in identical total economic dispatch 

cost for each wind error state and therefore identical expected cost.  Units G3 and G5 are 

more expensive units than G1, so the deterministic model which does not account for the 

wind uncertainty commits G1 at a higher level than the stochastic models.  The stochastic 

models find it advantageous to increase the output from either G5 or G3 and decrease the 

output from G1 due to the increase in ramping capability this brings into the system, and 

in particular for line three.  Comparing the stochastic models reveals that it is very 

important to consider the location of ramping in the system.  Remember the modified 

stochastic model only focuses on line three (the constrained line), and it is able to achieve 

an expected cost as low as the full stochastic program, which considers the entire 

transmission network. 
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Table 3.7 Expected Total Cost for Both Unit Commitment and Economic Dispatch 

 Stage 

System Cost ($) UC E(ED) E(UC-ED) 

Deterministic 6,985.48 -120.84 6,864.64 

Modified Stochastic 7,053.05 -283.11 6,769.94 

Full Stochastic 8,140.48 -1,370.54 6,769.94 
 

 

Table 3.8 Unit Commitment Generation Levels for the Three UC Problems 

  Generating Unit 
Program G1 G2 G3 G4 G5 
Deterministic 102.62 100.00 0.38 150.00 0.00 
Modified Stochastic 93.00 100.00 0.00 149.13 10.87 
Full Stochastic 93.00 100.00 10.00 150.00 0.00 

 

Table 3.9 highlights the importance of strategically locating ramping capability 

for line three, taken as the product of a unit’s ramping capability and its distribution 

factor for line three and summing over all units with a distribution factor of the same sign 

for this particular line.  The table shows the effective ramping on line three and the end of 

the line where the ramping is located.  In the unit commitment stage, the stochastic 

models increase the effective downward ramping capability although on opposite ends of 

line three, whereas the deterministic model only allows for 0.88 MW of effective 

downward ramping capability on the same end of line three and 0.90 MW on the opposite 

end of line three with respect to the wind site.  Bringing units G3 and G5 online, as is 

done in the stochastic models, increases the downward ramping capability to allow for 

the handling of larger potential upward deviations in wind generation.  In the 

deterministic model, unit G1 is committed at a high level of capacity, but is only able to 

provide 5 MW of ramping per period, therefore limiting the system’s overall ramping 

capability with respect to line three. 
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Table 3.9 Unit Commitment Directional Ramping Capability on Line 3 by Side of Line 

  Ramping 

Program 

Up  Down  Up  Down  

Positive Positive Negative Negative 

Deterministic 5.00 0.88 6.68 0.90 
Modified Stochastic 5.00 2.38 6.72 0.73 
Full Stochastic 5.00 0.88 6.68 5.18 

 

 Table 3.7 showed the deterministic model resulted in the higher expected cost, as 

compared to the two stochastic models.  The impact on expected cost of locational-based 

ramping becomes more apparent as you look at the cost of economic dispatch for each of 

the three models (Figure 3.4).  Economic dispatch costs by state are roughly the same 

until the unexpected wind surge exceeds 5 MW; at this point the deterministic model has 

used up all of the downward ramping capability (unit G1) on the side of  line three where 

the wind site is located.  This is in contrast to the two stochastic models that committed 

G1 at a lower level and increased the commitment level of other units which increase the 

system’s downward ramping capability with respect to line three.  The two stochastic 

models increase ramping capability with respect to line three using different generation 

units; the full stochastic model commits unit G3 at a higher level while the modified 

stochastic model commits unit G5 at a higher level, although both models result in the 

same cost for each wind error state and overall expected cost.   

Beyond a wind surge of 5 MW, the deterministic model either has to start 

increasing output from the most expensive unit (G3) or curtail the wind generation in 

order to relieve the congestion on line three, therefore ED costs between the deterministic 

and stochastic models dramatically diverge beyond this point.  Once the deterministic 

model runs out of downward ramping capability with respect to line three it is optimal to 

curtail wind generation, with costs leveling off for higher wind error states (see Figure 

3.4).  Similarly, the ED costs by state for both the modified and full stochastic models 

level off as excess wind is curtailed beyond a wind surge of 14.6 MW.  In all three 

models ED costs stop falling and level off once all of the downward ramping capability 

has been used and the next least expensive way to relieve congestion on the line is to 
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curtail excess wind generation.  The results of the stochastic models show that some 

positive level of wind curtailment is optimal and it is not beneficial in terms of cost to 

completely eliminate wind curtailment.  There is a tradeoff between altering the 

deterministic UC by bringing on a more expensive unit (G3 and G5 versus G1) in the unit 

commitment stage and curtailing excess wind generation to respond to the wind surge. 

 

 

Figure 3.4 Dispatch Cost by State for the Three UC-ED Models 

 

3.3.2 Fourteen Bus Test System 

 The previous section highlighted the benefits of stochastic models and in 

particular the modified stochastic model over the deterministic model through the use of 

a small four bus test system.  This section compares a larger fourteen bus system, with 

the aim of comparing the three models in a more realistic system.  While the previous 

section assumed a uniformly distributed wind forecasting error, in this section wind 

forecasting errors are approximated using actual wind forecasting and generation data 

from the Midwest Independent System Operator (MISO).  The results of this section 

show that the cost benefits of the modified model equal the full stochastic model using a 
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larger test system which incorporates wind error distributions approximated using actual 

generation and forecasting data.         

3.3.2.1 Fourteen bus system and parameters 

 The parameters of the fourteen bus test system are from the University of 

Washington’s power system test case archive, which houses the IEEE 14 bus test case 

used in this analysis (UW, 2012).  A schematic of the test system is shown in figure 3.5.  

The system is comprised of ten generating units (G*), with the wind site (G9) located at 

bus thirteen (B13) and four loads (L*).  Parameter values for generating units, loads, and 

transmission lines are shown in tables A1-A4 in the Appendix. 

 

 

Figure 3.5 Schematic of Fourteen Bus Test System 
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3.3.2.2 Estimation of MISO Wind Forecasting Errors 

 Forecasts of wind generation continue to be updated as the operating hour 

approaches and ideally the forecast accuracy improves as the operating hour approaches.  

The forecast data used in this analysis is the day-ahead wind forecast and is in the range 

of the forecast that would be used during the unit commitment stage.  In this section the 

distributions for wind forecasting errors are estimated using actual hourly aggregate wind 

generation and forecast aggregate wind generation data from MISO covering the time 

period of April 25th through August 29th of 2012, resulting in 3,072 hourly observations.  

MISO wind generation and wind forecast data were acquired through data request.  Table 

3.10 shows summary statistics of wind generation, wind generation forecast, and forecast 

error.  Two factors may affect the accuracy of error measures used in this analysis as 

compared to actual forecast errors: 1) using aggregate data may result in less wind 

variability than a single wind site because variability at one wind site may be offset to 

some extent by variability at another wind site and 2) curtailment of wind generation may 

have an impact on error values, as curtailment is not observable in the actual wind 

generation data used in this analysis.  Sensitivity analysis will be used to examine the 

impacts of increased variability in the wind forecast error.  Total wind capacity in MISO 

is approximately 11,857 MW for the time period of the wind generation and forecast data 

used in this analysis, though mean wind generation is markedly less than this level 

(MISO, 2012).  Mean forecast error is negative meaning on average the wind generation 

forecast is less than actual wind generation.  Consistently under forecasting of wind 

generation is one method to increase the system reserve margin and will reduce the 

chance of under committing other generation resources, although it does not address the 

location of the ramping capability.  Both actual wind generation and forecast are 

positively skewed, while skewness of the error is near zero.  The distribution of the wind 

forecasting error is nearly symmetric about a mean of -25.47 MW.        
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Table 3.10 Summary Statistics of Wind Generation, Wind Generation Forecast, and 
Forecast Error 

  Summary Statistics 
Wind 

Forecast
Wind 

Generation 
Forecast 

Errorf

Maximum (MW)  7,812.53 7,710.87 2,848.38

Minimum (MW)  70.89 47.63 -2,754.67

Mean (MW)  2,845.90 2,871.38 -25.47

Standard Deviation (MW)  1,785.33 1,866.13 669.39

Skewness  0.65 0.60 -0.07

Kurtosis  -0.51 -0.70 0.94
f Negative values are under forecast (actual wind generation is larger than forecast  
  generation). 

 

While the wind forecast error distribution appears to be approximately symmetric 

using all 3,072 observations, the conditional error distributions exhibit skewness values 

that deviate further from zero when the error is stratified based on the forecast level.  In 

this analysis wind forecast errors are stratified into one of three bins depending on the 

wind forecast level.  Bin widths are determined in order to have an equal number of 

observations in each of the three bins or 1,024 observations per bin.  Summary statistics 

for each of the three bins are shown below in Table 3.11, with Bin 1 corresponding to 

wind forecast levels less than 1,691 MW, Bin 2 for forecast levels between 1,691 MW 

and 3,432 MW, and Bin 3 for forecast levels greater than 3,432 MW.  The three bins are 

compared in this analysis to show the benefits of using the stochastic models over the 

deterministic model vary depending on the wind generation forecast level.  
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The previous section assumes the wind forecasting error is uniformly distributed, 

though this is not likely to be a very realistic assumption.  Many papers assume the wind 

forecast error is normally distributed (Makarov et al., 2002; Castronuovo and Pecas-

Lopes, 2004; Pinson and Kariniotakis, 2003; Milligan, Schwartz, and Wan,  2003), while 

other papers (Bofinger, Luig, and Beyer, 2002; Fabbri et al., 2005; Bludszuweit, 

Dominguez-Navarro, and Llombart, 2008) show wind forecast errors are more accurately 

described by a beta distribution.  Using a persistence forecast for wind generation, 

Bludszuweit, Dominguez-Navarro, and Llombart (2008) show that the wind forecast 

error is well approximated by a beta distribution.  In their paper the persistence forecast is 

calculated from the mean wind generation of the time interval two periods prior to the 

forecast interval.  A two period delay between the calculation of the mean wind 

generation and the forecast interval is necessary to capture the market closure delay, 

typical in short-term energy markets.  Their paper shows the kurtosis of the forecast error 

distribution varies widely depending on forecast horizon (how far in advance wind 

generation is being predicted) and wind generation level, making the beta distribution 

well suited due to its ability to approximate distributions over a wide range of kurtosis 

values. 

In this section a maximum entropy method is used to approximate discrete 

distributions for each of the three bins (see Golan, Judge, and Miller, 1996).  While other 

papers assume wind forecasting errors are specified by an assumed functional form, this 

method makes no assumption about the underlying data generating process for wind 

forecast error.  The maximum entropy procedure used here selects probabilities for 

equally spaced points in a discrete distribution such that a specified list of moments of the 

distribution exactly match the analogous moments from the original distribution.  In this 

analysis the first twenty moments are preserved for each of the three bins.  Forty support 

points are estimated for each of the three distributions, which translates to forty wind 

error states considered by the two stochastic models.  Wind forecast errors are specified 

as a percent of installed wind capacity so that the error distributions may be scaled to any 

level of installed wind capacity.  Error distributions approximated using the maximum 

entropy method are displayed for each of the three bins in Figures 3.6-3.8.  The figures 
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show distributions that vary widely by wind forecast bin and are in agreement with the 

summary statistics shown in Table 3.11.  

 

 

Figure 3.6 Wind Forecast Error Distribution for Bin One (Forecast<1,691 MW) 

 

 

Figure 3.7 Wind Forecast Error Distribution for Bin Two (1,691 MW<Forecast<3,432 
MW) 
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Figure 3.8 Wind Forecast Error Distribution for Bin Three (Forecast>3,432 MW) 
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achieve an expected cost no greater than the deterministic model and usually result in a 

lower cost solution.  While reductions in expected costs are small in percentage terms 

they are large in dollar terms.  For bin three a feasible solution does not exist beyond 
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3,840 MW of installed wind capacity, as insufficient levels of downward ramping 

requirements are available to meet the large unexpected reductions in wind generation.  

In an actual power system one method to accommodate the reduction in wind generation 

could be to shed load.  Large unexpected increases in wind generation are not 

problematic as excess wind generation may be curtailed, leaving sufficient generation to 

meet load, but a large reduction in wind generation may result in insufficient upward 

ramping capability of non-wind generation and therefore no feasible solution.   

The figures show that as the level of installed wind capacity is increased the 

benefits of the full and modified stochastic models over the deterministic model increase.  

In addition to benefits increasing with larger levels of installed wind capacity benefits 

also vary across bins with the stochastic models achieving larger cost reductions relative 

to the deterministic model for bins two and three relative to bin one.  This is expected 

because figures 3.6 through 3.8 show forecast errors are larger for a given level of wind 

capacity both in percentage and MW terms for the higher wind forecast bins (i.e., Bins 2 

and 3).  The cost reduction benefits of the stochastic models increase for both higher 

levels of installed wind capacity and periods of higher forecasted wind generation. 

 

 

Figure 3.9 Bin One Expected Cost as a Percent of Deterministic Model Expected Cost 
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Figure 3.10 Bin Two Expected Cost as a Percent of Deterministic Model Expected Cost 

 

 

Figure 3.11 Bin Three Expected Cost as a Percent of Deterministic Model Expected Cost 

 

The modified stochastic model is able to achieve a solution which is equal to the 

full stochastic solution for each of the three wind forecast bins and all levels of wind 

capacity considered at a marked reduction in problem size as compared to the full 

stochastic problem.     
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  Table 3.12 shows a breakdown of the constraints considered by each of the three 

models for bin two and an installed wind capacity of 3,840 MW.  The optimal solution of 

the deterministic model results in only four transmission lines being at their limit; line 11 

is at its upper limit and lines 14, 15, and 18 are at their lower limits (binding in the 

opposite direction than specified).  These four lines are the only lines considered by the 

modified stochastic model, leading to a reduction in the number of problem constraints of 

approximately 39.5 percent as compared to the full stochastic model.  For this wind 

forecast bin and level of wind capacity the modified stochastic model achieves a solution 

which is identical to the full stochastic problem while considering 39.5 percent fewer 

constraints.  The modified problem requires the solution to the deterministic problem as 

inputs, therefore adding the 61 constraints of the deterministic problem to the 2,009 

constraints of the modified stochastic problem still results in a reduction of 37.7 percent 

as compared to the full stochastic model.    

      

Table 3.12 Number of Constraints for the 14 Bus Model by Model Formulation 

Constraints Deterministic 
Modified 
Stochastic 

Full 
Stochastic 

Load Balance 1 41 41 
Maximum Generation 10 410 410 
Minimum Generation 10 410 410 
Transmission Line Up Limits 20 164 820 
Transmission Line Down Limits 20 164 820 
Generator Upward Ramp 0 410 410 
Generator Downward Ramp 0 410 410 
Total Constraints 61 2,009 3,321 

 

 Table 3.13 compares the problem sizes for a general formulation, using indices 

from the model formulations.  The difference in the number of constraints between the 

full stochastic and modified stochastic problems for the general formulation is 2(s+1)(l-

m), using indices from the model formulations.  The reduction in problem size is a 

function of the number of lines considered by the two problems and the number of wind 

forecast error states considered.  Figure 3.12 shows the reduction in problem size for the 

modified stochastic model relative to the full stochastic model changes with the number 
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of lines and binding transmission lines considered by the two stochastic problems.  The 

modified problem becomes smaller relative to the full stochastic problem as the number 

of lines considered in the full stochastic problem (l) grows relative to the number of lines 

considered in the modified problem (m).  Therefore, savings will likely increase in larger 

systems as the number of lines in the full stochastic model increases relative to the 

number of lines considered in the modified stochastic problem.   

 

Table 3.13 Number of Constraints for a General Model by Model Formulation (using 
Indices from Model Formulations) 

Constraints Deterministic 
Modified 
Stochastic Full Stochastic 

Load Balance 1 s+1 s+1 
Maximum Generation i i+i*s i+i*s 
Minimum Generation i i+i*s i+i*s 
Transmission Line Up Limits l m+m*s l+l*s 
Transmission Line Down Limits l m+m*s l+l*s 
Generator Upward Ramp 0 i+i*s i+i*s 
Generator Downward Ramp 0 i+i*s i+i*s 
Total Constraints 2(i+l)+1 (s+1)(4i+2m+1) (s+1)(4i+2l+1) 

 

 

Figure 3.12 Reduction in the Number of Constraints Considered as a Function of Lines 
Considered in the Full Stochastic Problem (l) and the Modified Stochastic Problem (m) 
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The solution to the modified model is achieved through an iterative process where 

other transmission lines not binding in the solution of the deterministic model are 

checked for violations after the fact, therefore if other violations are found these lines are 

added to the original problem and resolved.  In this regard, the modified stochastic 

problem size and solution times are somewhat uncertain and will increase with the 

number of iterations required to achieve an optimal solution that is feasible in terms of 

the entire system.  

 

3.4 Conclusions 

As installed wind capacity levels continue to increase in the United States and around 

the world methods are needed to improve the integration and utilization of this 

intermittent resource.  Numerous papers have shown that stochastic models which 

account for the uncertainty in wind generation are superior to deterministic models in 

terms of cost, although at greater computational burden.  This paper has demonstrated 

that a modified stochastic model (developed in this essay) is capable of achieving 

expected costs which are equal to the full stochastic model, while dramatically reducing 

the size of the model.  The results of both the four and fourteen bus test systems highlight 

the importance of considering the location of the wind site within the transmission 

network and the effect the network has on the ramping capability provided by other units 

in the system.  The modified stochastic model is able to capitalize on the use of key 

constraints in the system to achieve an expected cost for the UC-ED problem which is 

nearly as low as the full stochastic model and markedly lower than the deterministic 

model. 

Comparisons across the three models are made using two test systems.  While the 

magnitude of the benefits achieved in this paper are dependent on the underlying test 

systems, the cost reductions of the modified stochastic model relative to the deterministic 

model are equal to the full stochastic model for both test systems considered.  Also, the 

reduction in problem size of the modified stochastic model relative to the stochastic 

model is dependent on the number of transmission lines included in the modified 

problem.  The appropriate number of binding or near binding transmission lines to 
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include in the modified problem will depend on the system and may require further 

simulation to determine an appropriate proximity for inclusion. 

  While the accuracy of wind forecasting techniques will continue to improve, more 

robust methods to plan for and incorporate higher levels of wind generation are also 

necessary.  As a renewable resource wind generation has many benefits, but it also poses 

a number of challenges to both system planners and operators.  This paper presents a 

methodology that helps improve decision making and will allow for better utilization of 

this intermittent resource at both the planning and operational stages.  
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CHAPTER 4: VALUATION OF ENERGY STORAGE WITH WIND GENERATION 

4.1 Introduction and Literature Review 

The dramatic increase in intermittent forms of electricity generation (wind and 

solar) increases the importance of development and adoption of fast responding energy 

storage resources, such as battery storage, flywheels, and compressed air storage, which 

are capable of quickly responding to fluctuations in output.  In a report titled “20% Wind 

Energy by 2030” the United States Department of Energy assembled a group to assess the 

likely effects of wind generation providing 20% of electricity consumption by 2030 

(DOE, 2008).  Denholm et al. (2010) concluded that wind penetrations at these levels 

would increase the flexibility requirements of the system: likely creating market 

opportunities for fast responding energy storage technologies.  A primary benefit of 

energy storage is its ability to serve the electricity system in multiple roles (arbitrage, 

ancillary services, congestion relief) simultaneously (Denholm et al., 2010).  In order to 

determine the likely adoption of various energy storage technologies, methods to 

accurately determine their benefits are required.  

Energy arbitrage (storing energy during low priced periods and selling during 

periods of high electricity prices) was one of the original uses for energy storage (see 

Sioshansi et al., 2009; Walawalkar, Apt, and Mancini, 2007).  Due to the strong diurnal 

pattern exhibited by load, electricity prices tend to exhibit a similar daily cycle.  

Temporal arbitrage via energy storage capitalizes on this daily cycle by storing low 

priced energy during the late night and early morning hours for sale during the higher 

priced afternoon periods.  It may also be possible for energy storage to profit from 

arbitrage on less than a daily time frame. 

Participation in markets for ancillary services also shows promise for energy 

storage.  Ancillary services are resources used to keep real-time supply and demand in 
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balance and can be characterized by three types: regulation, spinning reserves, and non-

spinning reserves (Xi, Sioshansi, and Marano, 2011).  These three types of services are 

differentiated by the amount of time required to respond, with regulation requiring 

participants to respond in a matter of seconds, spinning reserves within ten minutes, and 

non-spinning reserves responding within the hour.  Regulation is generally the most 

valuable of the three types due to the short response time required for resources providing 

this service.  Energy storage is particularly well suited to providing regulation due to fast 

response times and generally low levels of energy delivered (Denholm et al., 2010).  

Tomic and Kempton (2007) utilize a metric called the “dispatch to contract ratio”, which 

is the amount of energy supplied for regulation divided by the amount of regulation 

services capacity supplied to the market during a given period of time.  They estimated an 

average ratio of roughly 0.1 using data from the California Independent System Operator 

(CAISO), meaning that on average one-tenth of the available capacity sold into the 

market was called upon to supply energy during a given time period.  A low level of 

actual energy being supplied is particularly beneficial to energy storage because it allows 

the device to use the majority of the energy stored for arbitrage purposes. 

Providing congestion relief to existing transmission lines and backup power for 

line outages are potential additional sources of value for energy storage (see Denholm 

and Sioshansi, 2009; EPRI, 2010; Xi, Sioshansi, and Marano, 2011).  Storage can relieve 

congestion on transmission lines and possibly postpone the need for transmission 

capacity additions.  Using energy storage as a source of backup power also has the ability 

to reduce system damage due to outages. 

In order to meet a 20% wind generation by 2030 goal, significant increases in 

transmission capacity will be required to deliver wind generation to load centers (DOE, 

2008). While multiple studies (Denholm et al., 2010; Sioshansi et al., 2009) claim 

locating storage near the load (as opposed to at the wind site) results in higher system 

value, this may not be true when considering the potential reduction to new transmission 

capacity requirements due to locating storage at the wind site.  Pattanariyankool and Lave 

(2010) show the optimal transmission line capacity to a distant wind site is less than the 

capacity of the wind site, due to the negative correlation between wind generation and 
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load (and as a result, prices).  Wind generation tends to produce its highest output of the 

day during the low value (night time) period and conversely its lowest output during the 

high value (afternoon) time of day.  There is a direct tradeoff between installing a unit of 

transmission capacity and the value of energy this additional unit of transmission capacity 

is able to supply to the network.  The negative correlation between wind generation and 

wholesale prices leads to further reductions in the optimal transmission line capacity.  

Siting energy storage at the wind site has the potential to further reduce the optimal 

transmission line capacity by shifting lower value (off-peak) energy to higher value (on-

peak) periods.  The additional reduction in transmission capacity (and ultimately costs) 

from energy storage is a potential source of value for this resource.    

A number of papers have valued energy storage by using these fast responding 

resources to perform one or two of the functions covered above (Bathurst and Strbac, 

2003; Garcia-Gonzalez et al., 2008; Denholm and Sioshansi, 2009; Sioshansi et al., 2009; 

Drury, Denholm, and Sioshansi, 2011). Bathurst and Strbac (2003) use battery storage in 

conjunction with wind generation to perform two functions: energy arbitrage and 

reduction of imbalance penalties from the wind site.  They conclude that there is added 

value to jointly optimizing energy storage and wind site operation.  Currently, wholesale 

electricity markets in the United States do not penalize wind generation for deviating 

from forecasted levels in real-time.     

Garcia-Gonzalez et al. (2008) develop a stochastic revenue maximization model 

to jointly optimize wind generation and pumped hydro storage.  In their paper, the joint 

optimization is compared to optimizing the use of the two assets independent from each 

other.  Their paper shows benefits to joint optimization due to the wind site being 

responsible for deviations from generation the wind site cleared in the day-ahead market.  

As noted earlier, electricity markets in the United States do not hold wind sites 

accountable for deviations in generation from their forecast levels, so there is little 

incentive for owners of wind generation assets to reduce these deviations.   

Papers by Denholm and Sioshansi (2009) and Drury, Denholm, and Sioshansi 

(2011) assess the economics of utilizing compressed air energy storage (CAES) with 

wind generation.  The first paper by Denholm and Sioshansi looks at the economics of 
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locating storage at the load versus at the wind site.  In their paper, CAES is valued by 

performing two functions, arbitrage and transmission capacity reduction, when located at 

the wind site versus only arbitrage when storage is located at the load.  Their paper uses a 

revenue maximization framework; the optimal transmission line capacity and energy 

storage capacity are determined by carrying out the maximization multiple times, 

iterating over various capacity combinations of these two parameters.  Denholm and 

Sioshansi conclude that there are potential benefits to co-locating wind and storage, but 

these benefits may disappear if storage were able to participate in ancillary service 

markets in addition to being used for energy arbitrage.  The paper by Drury, Denholm,  

and Sioshansi also uses CAES to value storage capable of participating in both energy 

and reserve markets.  Unlike the previous paper, Drury, Denholm, and Sioshansi (2011) 

does not consider the joint operation of CAES and wind generation.  Their paper 

concludes that using energy storage in both energy and reserve markets dramatically 

increases revenue for storage over participating in energy markets alone. 

As the papers covered to this point show, energy storage is capable of 

simultaneously performing a multitude of functions.  If energy storage were capable of 

serving only a single function at any given time, then valuing this resource serving in 

each role independently would be the correct method of valuation.  As Sioshansi et al. 

(2009) notes, “…any analysis of energy storage that considers only one or a few 

attributes (such as energy arbitrage) and neglects the interplay among various sources of 

value is likely to significantly underestimate the value and social benefits of energy 

storage.”  In one of the more extensive analyses of valuing energy storage, Xi, Sioshansi, 

and Marano (2011) developed a stochastic dynamic programming model to value 

distributed energy storage in four areas: energy arbitrage, regulation, backup generation, 

and distribution relief.  Their paper uses a co-optimization framework allowing battery 

storage to optimally serve in these four roles.  Xi, Sioshansi, and Marano (2011) conclude 

there are tradeoffs between using the battery to perform these various functions.  For 

example, using battery storage to provide both arbitrage and regulation (as opposed to 

strictly arbitrage) tends to reduce the revenues from arbitrage, although Xi et al. (2011) 
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conclude the additional revenues from providing regulation services more than offset the 

reduction in arbitrage revenue.   

Multiple papers (e.g., Sioshansi et al., 2009; Drury, Denholm, and Sioshansi, 

2011; Walawalkar, Apt, and Mancini, 2007) consider arbitrage via energy storage 

without considering wind generation, while other papers (e.g., Castonuovo and Pecas-

Lopes, 2004; Benitez, Benitez, and Cornelis van Kooten, 2008; Garcia-Gonzalez et al., 

2008; Denholm et al., 2010) consider energy arbitrage in conjunction with wind 

generation.  The papers, which consider the joint optimization of wind generation and 

storage, generally conclude there is added value to the joint optimization of wind 

generation and storage primarily due to the negative correlation between wind generation 

and wholesale electricity prices.  Denholm et al. (2010) argues that charging and 

discharging energy storage with respect to the entire system is optimal as compared to 

restricting the storage device to charge from a single generating unit.  Co-locating wind 

generation and storage does not necessarily mean the operation of energy storage is 

directly tied to the wind site, and in the model developed in this paper energy storage is 

not operated solely considering the wind site.  Operational decisions of the wind site and 

energy storage are tied through the transmission line constraint and charging of the 

battery using energy generated by the wind site, but participation of storage in the energy 

and regulation markets is not directly in response to the variability in output from the 

wind site. 

A paper by Pattanariyankool and Lave (2010) uses a profit maximization 

framework to optimally size a transmission line to a distant wind farm.  Their paper 

shows the optimal transmission line capacity to a distant wind site is less than the 

capacity of the wind site, largely due to average output from the wind site being 

dramatically less than the capacity of the wind site.  There is a direct tradeoff between the 

additional revenue from increased energy sales from wind generation and the cost of 

installing a unit of transmission line capacity required to deliver the energy to the rest of 

the electricity network.  While Pattanariyankool and Lave (2010) did not consider energy 

storage, introducing energy storage at the wind site may further reduce the optimal 

transmission line capacity and increase the capacity factor of the line by shifting energy 
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generated at the wind site from times when the transmission line is at capacity to times 

when it is not. 

This paper develops a method that values large-scale battery storage with 

intermittent wind generation by simultaneously considering multiple sources of revenue 

for the battery.  Jointly considering multiple revenue streams allows for the possibility of  

all revenue generated by the battery coming from a single source of revenue and is 

therefore more robust than other methods which only consider one or two sources of 

revenue.  Once the optimal levels of storage and transmission capacity are determined for 

a wind site of given capacity and transmission line of a given length, revenues and energy 

are broken down by market (i.e. day-ahead and real-time energy and regulation services) 

and sensitivities to modeling assumptions are analyzed.   

4.2 Methodology 
As the discussion of the previous section concluded, in order to correctly value 

energy storage it is necessary to consider all potential sources of revenue.  The non-linear 

program developed in this section is used to determine the optimal levels of both energy 

storage and transmission line capacities for a wind site of given capacity.  The model 

considers four potential sources of value for battery energy storage: day-ahead and real-

time energy markets, the regulation market, and potential cost savings from optimal 

sizing of transmission line capacity.  Each period the battery may sell energy into either 

the day-ahead or real-time energy markets or capacity into the regulation market (or 

perform any combination of these three functions). While the battery may sell its 

resources into multiple markets, it is restricted to charging from energy generated by the 

wind site.   

 The battery charging and discharging efficiency is specified by ߟ஼and ߟ஽, where 

the charging efficiency is the amount of energy stored in the battery per unit of charging 

and discharging efficiency is the amount of power supplied per unit of discharging.  

Round trip efficiency is the product of charging and discharging efficiencies.  The 

remaining battery parameters are maximum charging and discharging rates (ߚ஼ and ߚ஽, 

respectively) and maximum battery storage capacity (ߜ).  These last three parameters are 

expressed in per MW of installed battery capacity and are increased by increasing the 



 73

level of battery capacity installed at the wind site.  Model parameters are listed below in 

Table 4.1. 

 

Table 4.1 Battery Operations Optimization Model Parameters 

Notation Definition ߟ஼ battery charging efficiency ߟ஽ battery discharging efficiency ߚ஼ maximum battery charging rate (MWh/MW*hr) ߚ஽ maximum battery discharge rate (MWh/MW*hr) ߜ maximum battery storage capacity (MWh/MW) ݌௧஽஺ day-ahead LMP for time period ‘t’ ($/MWh) ݌௧ோ் real-time LMP for time period ‘t’ ($/MWh) ݌௧ோீ regulation market clearing price for time period ‘t’ ($/MW) ߢ dispatch to contract ratio (MWh/MW) ௧ܹ quantity of wind generated by wind site in time period ‘t’ (MWh) ܥ஻ per unit annualized battery cost ($/MW) ߛ lifetime round trip cycles for battery  ܣ annuity factor for transmission line cost 
Ζ miles per kilometer conversion factor (miles/km) 
Θ transmission line length (miles) ߰ restriction on energy availability for regulation (MWh/MW) 

 

Time granulation is set at one hour – i.e. a time period is an hour.  This abstracts 

from charge/discharge cycles within the hour, which are assumed to be relevant only for 

regulation purposes.  In each period decisions are made as to the level of battery charging 

and discharging and the level of capacity sold into the regulation market.  The decision 

variable (ݍ௧ௐ஻) is the amount of energy stored in the battery from the wind site in period 

t.  While one variable determines the level of energy stored in the battery, discharging of 

the battery may occur through three methods: selling energy into the day-ahead (ݍ௧஽஺) 

market, selling energy into the real-time market (ݍ௧ோ்), or energy supplied by selling 

capacity (ݍ௧ோீ) into the regulation market.  Model decision variables are shown in Table 

4.2.   
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Table 4.2 Battery Operations Optimization Model Decision Variables 

Notation Definition ݍ௧ௐ஻ energy stored into the battery from the wind site in time period t (MWh) ݍ௧ௐ energy sold from the wind site into the real-time market in time period t (MWh) ݍ௧஽஺ energy sold into the day-ahead energy market in time period t (MWh) ݍ௧ோ் energy sold into the real-time energy market in time period t (MWh) ݍ௧ோீ  capacity cleared in the regulation market in time period t (MW) ݍ௧஻ energy in the battery in time period t (MWh) ݔ௧஼  portion of time period spent charging the battery ݔ௧஽ portion of time period spent discharging the battery ܳ஻ battery capacity (MW) ܳ௅ transmission line capacity (MW) 

 

The objective to be maximized, profit from operating the wind site and battery 

and determining battery and transmission line capacities, is shown below in (1).  The 

objective considers the three sources of revenue for the battery and the wind site, where 

the wind site is only allowed to sell energy into to the real-time market, net of the 

annualized cost of the battery converted to a cost per MWh of use and the annualized cost 

of the transmission line.  The dispatch to contract ratio (ߢሻ is the level of energy supplied 

by a resource per unit of capacity cleared in the regulation market and remains constant 

for all periods.  In actuality, the dispatch to contract ratio is a random variable because 

the amount of energy that is supplied for a given level of capacity sold in this market is 

not known in advance.  Assuming a fixed level for the dispatch to contract ratio likely 

overstates the profitability of participation in the regulation market had uncertainty been 

considered.  

 

෍ ௧஽஺ݍ஽ߟ௧஽஺݌ ൅்
௧ୀଵ ௧ௐݍ௧ோ்ሺ݌ ൅ ௧ோ்ݍ஽ߟ ൅ ௧ோீሻݍߢ ൅ ௧ோீݍ௧ோீ݌ െ ߜߛ஻ܥ ܳ஻ ෍ ௧ௐ஻்ݍ

௧ୀଵ െ C௅ሺܳ௅ሻ       ሺ1ሻ 

  

The annualized cost of the battery is converted to a cost per unit of use by 

dividing the annualized cost by the product of the annual cycles of the battery and the 

storage capacity per cycle.  Battery annual cycles are determined by spreading lifetime 

cycles evenly over the assumed life of the battery.   Using a per unit of use cost for the 
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battery does not ensure annual battery revenue is sufficient to cover annual battery cost, 

therefore another restriction is required and is defined as: 

 

෍ ௧஽஺ݍ஽ߟ௧஽஺݌ ൅ ௧ோ்்݌
௧ୀଵ ሺߟ஽ݍ௧ோ் ൅ ௧ோீሻݍߢ ൅ ௧ோீݍ௧ோீ݌ ൒  ஻ܳ஻.                             ሺ2ሻܥ

 

The restriction in (2) ensures annual battery revenue is sufficient to cover annual battery 

cost.  Accounting for battery cost both as a per unit of use cost in (1) and annualized cost 

in (2) is necessary to ensure the battery is used during optimal times by (1) and frequently 

enough to cover annual battery costs by (2).  The restriction in (2) may cause the battery 

to be used during periods when per unit revenue for the battery is not sufficient to cover 

the cost per unit of use, potentially resulting in a reduction in profit relative to the profit 

that would have occurred had the annual revenue restriction not been in place.  From an 

investment perspective the annual revenue restriction is necessary to ensure annual 

revenue from the battery covers annual battery cost.  Without this restriction the model 

may extend the battery life to an unrealistic period. 

The form of the annualized transmission line cost per unit of capacity ሺܳ௅ ሻ is 

specified in (3).  Parameter estimates (ߚଵ,  ଶሻ were estimated by Pattanariyankool andߚ

Lave (2010) using linear regression techniques.  The transmission cost function is non-

linear due to certain components of transmission line cost, such as right-of-way and tower 

costs, that do not vary with the capacity of the transmission line.  Transmission cost is an 

exponential function of line capacity and linear in line length.    

 C௅ሺܳ௅ሻ ൌ ܣ1 ݁ఉభሺܳ௅ ሻఉమΖΘ                                                          ሺ3ሻ 

 

Since the battery charges from the wind site, the sum of energy sold from the 

wind site into the real-time market and energy stored in the battery can be no greater than 

the amount of energy generated by the wind site for a given period (shown in (4)).   
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௧ௐݍ ൑ ௧ܹ െ  ሺ4ሻ                                                               ݐ׊     ௧ௐ஻ݍ

 

Therefore, energy from the wind site ሺ ௧ܹሻ may be sold directly into the real-time market ሺݍ௧ௐሻ, used to charge the battery ሺݍ௧ௐ஻ሻ, or curtailed.   

An accounting equation is used to keep track of the level of energy in the battery 

during a given time period and is defined as: 

௧஻ݍ  ൌ ௧ିଵ஻ݍ ൅ ௧ௐ஻ݍ஼ߟ െ ൬ݍ௧஽஺ ൅ ௧ோ்ݍ ൅ ஽ߟ1  ሺ5ሻ                                ,ݐ׊     ௧ோீ൰ݍ߰

 

where ݍ௧஻ is the battery level in period t, ݍ௧ିଵ஻ is the battery level in the previous period, ߟ஼ݍ௧ௐ஻ is the energy stored in the battery from the wind site in period t, and ቀݍ௧஽஺ ൅ݍ௧ோ் ൅ ଵఎವ  ௧ோீቁ defines the energy supplied from the battery to each of the three marketsݍ߰

in period t. 

  Since the battery may charge and discharge within a given hour, but not 

complete both tasks simultaneously, (ݔ௧஼) and (ݔ௧஽) are the portion of the hour spent 

charging and discharging, respectively.  The sum of the portion of the hour spent 

charging and the portion spent discharging cannot exceed one (shown in (6)).   

௧஼ݔ  ൅ ௧஽ݔ ൑  ሺ6ሻ                                                                 ݐ׊     1

 

The energy stored from the wind site into the battery during a given period is 

restricted by the lesser of the maximum charging rate times the proportion of the hour 

spent charging and the wind generated by the wind site (shown in (7a,b)).   

௧ௐ஻ݍ       ൑ ௧ௐ஻ݍ      ሺ7ܽሻ                                                    ݐ׊     ஼ܳ஻ߚ௧஼ݔ  ൑  ௧ܹ     ݐ׊                                                          ሺ7ܾሻ 
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Similarly, the restriction on total energy supplied by the battery to each of the 

three markets during a given period t may be no greater than the product of the maximum 

discharge rate and proportion of the hour spent discharging and is defined as: 

௧஽஺ݍ               ൅ ௧ோ்ݍ ൅ ௧ோீݍ߰ ൑  ሺ8ሻ                                               .ݐ׊     ஽ܳ஻ߚ௧஽ݔ  

 

The upper bound on the energy storage capacity for the battery is defined as: 

௧஻ݍ  ൑  ሺ9ሻ                                                                    ,ݐ׊     ஻ܳߜ

 

where ߜ is the maximum battery storage capability per unit of capacity and ܳ஻is the 

battery capacity.  Similarly, the upper bound on capacity sold into the regulation market 

is defined as: 

௧ோீݍ  ൑ ܳ஻     ݐ׊.                                                                    ሺ10ሻ 

 

The transmission line limits the total flow of energy from the combination battery 

and wind site and is defined as:   

௧஽஺ݍ  ൅ ௧ோ்ݍ ൅ ௧ௐݍ ൅ ௧ோீݍߢ ൑ ܳ௅     ݐ׊,                                               ሺ11ሻ 

 

where total energy supplied to the three markets cannot exceed the transmission line 

capacity ሺܳ௅ሻ. 

 The standard non-negativity constraints on the variables are shown in (12). 

,௧ௐݍ  ,௧஻ݍ ,௧஽஺ݍ ,௧ோ்ݍ ,௧ோீݍ ,௧ௐ஻ݍ ,௧஼ݔ ௧஽ݔ ൒  ሺ12ሻ                                         ݐ׊    0
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4.2.1 Solution Method 

 The optimal transmission line and battery capacities are found by solving the 

above program treating both transmission line and battery capacities as exogenous 

parameters and iterating over a grid of possible transmission line and battery capacities, 

ranging from zero to the capacity of the wind site.  This solution method results in 

solving multiple linear programs and choosing the combination of transmission line and 

battery capacities which results in the largest profit.   

 

4.3 Data and Parameter Estimates 

 Modeling results are largely driven by electricity price data over time, parameter 

estimates for the battery and transmission line, and wind generation data.  Prices for the 

day-ahead and real-time markets are from PJM Western Hub over the period September 

2011 through August 2012 (PJM, 2012a,b).  PJM Western Hub prices are chosen due to 

the relatively large amounts of existing wind capacity located in close proximity to this 

pricing point.  Regulation market clearing prices are also from PJM during the same 

period September 2011 through August 2012 (PJM, 2012c).  Summary statistics of prices 

in the three markets are shown below in Table 4.3.  Mean prices in the day-ahead and 

real-time markets are nearly equal, although the standard deviation of real-time prices is 

dramatically larger.  Using prices and/or wind generation from different locations may 

impact the profitability of energy storage.  The results section includes sensitivities on 

parameters likely to have a large impact on the profitability of battery storage.   

 

Table 4.3 Summary Statistics for DA and RT LMP at PJM Western Hub and PJM RMCP 

  Day-Ahead ($/MWh) Real-Time ($/MWh) RMCP ($/MW)

Mean 34.41 34.12 14.81
Standard Deviation 13.99 21.30 14.14
Sample Variance 195.70 453.72 200.06
Kurtosis 65.47 92.32 242.52
Skewness 5.76 7.09 12.72
Minimum Value 0.00 -120.57 0.00
Maximum Value 284.04 457.83 414.23
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 Tomic and Kempton (2007) estimate a dispatch to contract ratio of roughly 0.1 

using data from the California Independent System Operator (CAISO), meaning that one-

tenth of the available capacity sold into the market is called upon to supply energy during 

a given hour.   Their estimate is used throughout this analysis. 

Actual wind generation data from PJM West covering the same time period as the 

price data, September 2011 through August 2012 is used throughout this analysis (PJM, 

2012d).  Over this time period wind capacity in PJM West was approximately 5,600 

MW.  For purposes of this analysis the wind generation data are linearly scaled to result 

in a wind site capacity of 1,120 MW or one-fifth the capacity of PJM West.  Scaling of 

wind capacity is done in order to have a capacity which is more realistic for a single wind 

site.  The capacity factor of the 1,120 MW wind site is 0.212. The capacity factor is the 

ratio of how much electricity is generated given a particular level of capacity divided by 

the amount of electricity that could have been generated if the unit is operating at full 

capacity continuously, with a larger number representing more generation per unit of 

capacity.  Summary statistics of the scaled wind data are shown below in Table 4.4.  The 

mean wind generation is markedly less than the capacity of the wind site and is positively 

skewed, meaning relatively more periods result in wind generation, which is less than the 

mean and relatively fewer periods of high generation further from the mean. 

 

Table 4.4 Summary Statistics for Scaled Wind Site with a Capacity of  
Approximately 1,120 MW 

   Wind Generation (MW) 
Mean 237.83 
Standard Deviation 172.10 
Sample Variance 29,617.96 
Kurtosis -0.43 
Skewness 0.69 
Minimum Value 0.00 
Maximum Value 1,089.80 

   

 Published battery costs and parameters vary widely by project and technology.  

This analysis considers sodium-sulfur (NaS) battery technology, as this technology is by 
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far the most widely used to date (EPRI, 2010).  Battery parameters used throughout this 

analysis are summarized in Table 4.5.  Total battery cost of 3.1 million 2010 $/MW is 

annualized assuming a lifetime of ten years and a discount rate of ten percent.  This 

annualized battery cost is used in the battery revenue requirement, equation (2).  Total 

lifetime cycles are assumed to be spread evenly over the ten year lifetime of the battery to 

convert the $/MW-yr cost to $/MWh.  Battery cost is converted from $/MW-yr to 

$/MWh by dividing the annualized cost by annual cycles times MWhs stored per unit of 

battery capacity times battery capacity, for use in (1).   

 

Table 4.5 Summary of Sodium-sulfur Battery Cost and Parametersg 

     
Cost (million 2010 $/MW) 3.1 
Annualized Cost (2010 $/MW-yr) 504,511h 
Variable Cost (2010 $/MWh) 186.86 
Capacity (MWh/MW) 6 
Charge/Discharge Rate (MWh/hr/MW) 1 
Round trip efficiency 0.88 
Total lifetime cycles 4,500 

                g Battery cost and technology parameters p.4-22 (EPRI 2010). 
                 h Battery cost is annualized assuming a battery lifetime of 10 years and  
      discount rate of 10 percent. 

 

 Pattanariyankool and Lave (2010) estimate transmission line cost per kilometer as 

a function of capacity (MW) using ordinary least squares regression.  The function and 

parameter values estimated in their paper are used in this analysis and shown below in 

(13). 

 ݈݊ሺܿݐݏ݋ሻ ൌ  10.0841 ൅ 0.5759 כ ݈݊ሺܹܯሻ                                 (13)  

                  

This analysis assumes a transmission line of ten-mile length is required to connect 

the wind site to the transmission network. Therefore the cost function estimated by 

Pattanariyankool and Lave (2010) is converted from cost per kilometer to cost per mile.  

For purposes of this analysis, the total cost function is annualized using a lifetime of 40 
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years and discount rate of ten percent.  The non-linear shape of the cost function exhibits 

transmission line costs increasing with capacity, but at a decreasing rate (shown below in 

Figure 4.1).  Therefore, each successive unit of transmission line capacity costs less than 

the unit before it. 

 

 

Figure 4.1 Annual Transmission Line Cost as a Function of Line Capacity for Line 
Length of Ten Miles 

 
4.4 Results 

 For the model and parameter values considered in this paper, a battery cost of 3.1 

million dollars per MW results in an optimal battery capacity of zero MW.  In order for a 

positive level of battery capacity to be optimal a reduction in battery cost of 55 percent is 

required.  This implies a cost per unit for the battery of 1.395 million dollars per MW.  

This reduced cost is used for the remainder of this analysis.  Except for the reduction in 

battery cost, parameter values covered in the previous section define the base case. 

Changes in parameter values such as wind site characteristics, wholesale electricity 

prices, or transmission line cost will impact the optimal battery capacity.  Changes in 

these parameters are considered through sensitivity analyses on battery efficiency, 
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transmission line cost, and through increased variability in both wind generation and 

wholesale electricity prices.    

 

4.4.1 Base Case 

 The profit level of the wind site and battery varies with both battery and 

transmission line capacity (see Figure 4.2).  The optimal levels of battery and 

transmission line capacity for the 1,120 MW wind site are 151 MW and 741 MW, 

respectively.  The profit level is increased by 979,898 2010 dollars with an optimally 

sized battery and transmission line, relative to no battery and a transmission line of 

optimal capacity.  The optimal capacity of the transmission line is about 66 percent of the 

capacity of the wind site with an optimally sized battery, as compared to 60 percent with 

no battery.  The transmission line restricts the amount of energy supplied to the markets 

by both the wind site and battery; therefore profit increases at lower levels of 

transmission capacity as the cost of each additional unit of transmission capacity is less 

than the value of energy that unit of capacity supplies to the market.  For the optimally 

sized battery of 151 MW profit decreases beyond a transmission capacity of 741 MW.  

     

 

Figure 4.2 Profit as a Function of Battery and Transmission Line Capacity 
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 Figure 4.3 shows the optimal transmission line capacity for a given level of 

battery capacity initially decreasing with increasing battery capacity, but increasing for 

battery capacity levels beyond 45 MW.  At lower levels of battery capacity optimal 

transmission capacity initially decreases due to the relatively smaller battery not being 

able to shift enough energy to higher value periods to account for the additional cost 

required to make an increase in transmission capacity optimal.  Conversely, at higher 

levels of battery capacity the cost of an additional unit of transmission capacity is less 

than the increase in revenue provided by the larger battery.  The marginal cost of 

transmission capacity increases at a decreasing rate, meaning each additional unit of 

transmission capacity is less costly than the previous unit (see Figure 4.1).  As the 

optimal transmission capacity increases, the increase in revenue required from the battery 

to make an additional unit of capacity profitable is reduced.  The combined effects of 

transmission cost increasing at a decreasing rate and the capability of a larger battery to 

shift more energy to relatively higher value periods results in the optimal transmission 

capacity increasing with battery capacity beyond 45 MW. 

  

 

Figure 4.3 Optimal Transmission Line Capacity for a Battery of Given Size 
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 Energy supplied to the real-time market directly from the wind site decreases as 

battery capacity is increased (see Table 4.6).  With no battery, approximately 2,071 

GWhs are supplied to the real-time market by the wind site out of a total of 2,083 GWhs 

generated by the wind site.  For the no battery case, the optimally sized transmission line 

is 60 percent of wind site capacity and only results in wind curtailment of 12.5 GWhs 

(0.6 percent of total wind generation).  Total energy supplied to the markets increases 

marginally as battery capacity is increased.  Although, the energy sold with storage is 

sold at a higher average price than the no battery case causing total revenue to increase 

(see Table 4.7).  With the optimally sized battery and transmission line, wind curtailment 

is reduced compared to the no battery case for two reasons: 1) the optimal transmission 

capacity is greater, and 2) the installed battery stores energy which would otherwise be 

curtailed.  Installing storage at the wind site reduces the amount of wind curtailment, 

although total energy supplied to the markets decreases with increasing levels of battery 

capacity due to round trip efficiency losses of 12 percent.  Even with losses the price 

differential between periods of charging and discharging the battery is large enough to 

make storage profitable.   
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The regulation market accounts for about 50 percent of the energy supplied by the 

battery (see Table 4.8) and approximately 70 percent of the revenue generated by the 

battery (see Table 4.9).  This is in agreement with the belief that energy storage is well 

suited to providing regulation services as this market generally requires a small level of 

actual energy to be provided.  Revenue from participating in the regulation market 

accounts for the largest share of battery revenue due to receiving the regulation market 

clearing price for clearing capacity in this market and the real-time energy price for any 

energy supplied for regulation purposes.  This paper assumes a dispatch-to-contract ratio 

that remains constant at 0.1 MWh of energy is supplied to the real-time energy market for 

one MW of capacity cleared in the regulation market.  Participation of the battery in the 

real-time market accounts for roughly 30 percent of the energy supplied by the battery 

and approximately 20 percent of revenue generated by the battery, while participation by 

the battery in the day-ahead market accounts for the smallest levels of energy and 

revenue at roughly 20 percent and 10 percent, respectively.  The average prices in the 

day-ahead and real-time markets are nearly equal at approximately 34 $/MWh, although 

prices in the real-time market show a markedly larger level of volatility.  The increased 

volatility of prices in the real-time market, as compared to the day-ahead market, results 

in more profitable opportunities to use the battery for arbitrage in this market.  As Tables 

4.8 and 4.9 show participation by the battery in each of the three markets remains 

relatively constant irrespective of the battery capacity, which is due to the model 

assuming the wind site and battery are price-takers and their behavior does not affect 

market prices. 

       

Table 4.8 Percent of Battery Energy Sold by Market 

Battery Capacity (MW) 
Revenue Source 0 50 100 150 200
Battery (Day-Ahead) 0.0% 19.7% 19.6% 19.8% 20.0%
Battery (Real-Time) 0.0% 30.7% 30.8% 30.7% 30.7%
Battery (Regulation) 0.0% 49.7% 49.6% 49.4% 49.2%
Total 0.0% 100.0% 100.0% 100.0% 100.0%
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Table 4.9 Percent of Battery Revenue by Market 

Battery Capacity (MW) 
Revenue Source 0 50 100 150 200
Battery (Day-Ahead) 0.0% 10.3% 10.2% 10.3% 10.3%
Battery (Real-Time) 0.0% 19.5% 19.5% 19.5% 19.5%
Battery (Regulation) 0.0% 70.2% 70.2% 70.2% 70.2%
Total 0.0% 100.0% 100.0% 100.0% 100.0%

 

 The effect of the battery is to shift energy generated by the wind site from lower 

value periods to periods of relatively higher value.  Figure 4.4 shows energy duration 

curves for the no battery case and the optimally sized battery (151 MW).  The energy 

duration curves shown in this figure were created by sorting total energy supplied to the 

markets during a given hour from the highest value to the lowest value.  The effect of the 

battery is to shift relatively small amounts of energy from the extreme low tail of the 

curve to the extreme high tail, resulting in a large impact on revenue (see Figure 4.5).   

 

 

Figure 4.4 Energy Duration Curve 
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Figure 4.5 Revenue Duration Curve 
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Figure 4.6 shows that a large amount of the additional revenue added by the battery 

occurs during a small number of hours during the year and all hours result in higher 

revenue with the battery than without.  The difference in accumulated revenue curve is 

increasing at a decreasing rate, with 33 percent of the additional revenue being generated 

during the top 10 percent of annual revenue hours and 50 percent of the additional 

revenue accumulating within the top 24 percent of annual hours.    
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Figure 4.6 Percent of Revenue Difference Accumulated within a Given Percent of 
Annual Hours 

 

 It was initially thought that including energy storage would reduce the optimal 

transmission line capacity by shifting energy generated by the wind site from peak 

generation periods to periods of lower generation.  This peak shaving and valley filling 
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transmission capacity relative to the no battery case.  The previous results showed that 

optimal transmission capacity increases with increases in battery storage capacity due to 

additional revenue generated during a few high value periods more than offsetting the 

additional cost of increases in transmission capacity.   
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case results in less wind curtailment, but not to a larger extent than the amount of 

charging losses.    

 

 
Figure 4.7 Capacity Factor of Transmission Line per Unit of Transmission Capacity 

 

 
Figure 4.8 Revenue per Unit of Transmission Capacity 
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4.4.2 Sensitivities 

 This section aims to highlight the potential impacts of variation surrounding some 

of the key model parameters, as well as to investigate the impact of selection of 

alternative sites within the network that may have different patterns of wholesale 

electricity prices and wind generation.  Specifically, this section focuses on uncertainty in 

transmission cost, battery charging efficiency, variability in wind generation, and 

variability in wholesale electricity prices.  The impacts in these four areas are shown by 

varying each parameter over a reasonable range of values. 

 

4.4.2.1 Transmission Cost 

 Transmission costs can vary dramatically by location as a result of costs of right 

of way, regulatory compliance, materials, and labor.  Uncertainty in transmission cost is 

modeled by varying the transmission cost function (shown in (1)) over a range from 50 

percent to 150 percent of base case cost.  Scaling transmission cost in this manner also 

shows the effect of a longer (shorter) transmission line, which would increase (decrease) 

cost.  Table 4.10 shows that optimal transmission capacity decreases moderately with 

increasing transmission cost, ranging from 779 MW to 703 MW for transmission cost 

ranging from 50 percent to 150 percent of base case cost.  The results in this paper are 

less sensitive to variations in cost compared to the results of Pattanariyankool and Lave 

(2010) because their paper considers a distant wind farm requiring a much longer 

transmission line, where a small change in per capacity unit transmission cost would have 

a much larger impact on total transmission cost.  The cost function used in this paper is in 

terms of MW per mile, therefore a longer transmission line linearly increases 

transmission cost for a line of given capacity.  Like optimal transmission capacity, 

optimal battery capacity shows an inverse relationship to transmission cost.  As 

transmission cost is decreased (increased) an additional unit of battery capacity needs to 

earn a smaller (larger) level of revenue in order to increase profit.  A fifty percent change 

in transmission cost relative to the base case has a small (one percent) impact on 

combined profit of the battery and wind site. 
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Table 4.10 Sensitivity of Model Results to Transmission Line Costs 

Scaling 
Factor 

Optimal Transmission 
Capacity 

Optimal Battery 
Capacity 

 
Profit 

% of Base MW % of Base MW % of Base thousand $ % of Base 
Base 741 100 151 100 68,509 100 
50 779 105 160 106 69,409 101 

150 703 95 146 97 67,638 99 

 

4.4.2.2 Battery Efficiency 

 There is considerable uncertainty in roundtrip battery charging losses.  Multiple 

sources list roundtrip efficiencies ranging from 75 to 89 percent (Eyer and Corey, 2010; 

EPRI, 2010; Roberts, 2009).  Losses in sodium sulphur batteries are comprised of battery 

operating temperature (300 oC) (Roberts, 2009) and round-trip ac-to-ac conversion 

(EPRI, 2010).  The base case assumes a round trip efficiency of 88%, which is towards 

the upper end of the efficiency range.  Sensitivity analysis shows that a relatively small 

change in efficiency has a dramatic impact on profits.  Figure 4.9 shows how the profit 

maximizing level changes with charging efficiency.  The profit maximizing level of 

battery capacity is zero for efficiency levels below 85%.  At the other extreme efficiency 

of 100% is unrealistic, but shows the dramatic benefit of increased efficiency.   

 

 

Figure 4.9 Profit of Wind Site and Battery in Relation to Battery Efficiency 
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 Optimal battery and transmission line capacities change markedly with efficiency 

level (see Table 4.11).  Both optimal transmission and battery capacities decrease with 

efficiency reductions, with battery capacity decreasing more in percentage terms.  

Optimal transmission capacity is much more affected by changes in efficiency, than even 

changes in transmission cost.  A two percent reduction in efficiency relative to the base 

case reduces optimal transmission capacity by nine percent, while a 50 percent reduction 

in transmission cost relative to the base case leads to an increase in optimal transmission 

capacity of only five percent. Efficiency has such a profound impact on profitability 

because losses affect every MWh stored in the battery, which, similar to curtailed wind 

generation, are wasted MWhs.  In the future technological advances in battery efficiency 

could have a dramatic effect on the competitiveness of this technology.   

 

Table 4.11 Sensitivity of Model Results to Battery Efficiency 

Battery 
Efficiency 

Optimal Transmission 
Capacity 

Optimal Battery 
Capacity 

 
Profit 

Roundtrip MW % of Base MW % of Base thousand $ % of Base 
Base 741 100 151 100 68,509 100 
0.86 674 91 65 43 67,707 99 
1.00 1039 140 436 289 78,112 114 

 

4.4.2.3 Wind Variability 

 Wind generation variability can differ dramatically by location.  The data used in 

this paper are from the PJM Western Region, which is comprised of multiple wind sites.  

Aggregate wind generation data tends to exhibit reduced variability as compared to a 

specific wind site, due to wind sites not exhibiting a perfect positive correlation.  A 

decrease at one wind site is not usually accompanied by an equal decrease at all other 

wind sites comprising the aggregate data.  Using ERCOT wind data from 2004 through 

2009 Wan (2011) showed variability in wind generation is reduced with increases in 

installed wind capacity.  This section highlights the effects of increased wind site 

variability on both optimal transmission and battery capacities, and ultimately 

profitability. 
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 A piecewise linear scaling of wind variability is done in a manner to preserve the 

mean wind generation and have all periods of wind generation remain non-negative.  

Two scaling factors were used – one for wind generation below the base case mean wind 

generation and used to further scale down wind generation for these periods and another 

for wind generation above the base case mean wind generation and used to scale up wind 

generation during these periods.  The downward scaling factor was chosen to scale down 

periods below the base case mean wind generation in increments of 0.05.  Given the 

downward scaling factor the upward scaling factor was chosen to preserve the mean wind 

generation. As Table 4.12 shows, downward scaling factors are larger in percentage 

terms than upward scaling factors, leading to equal total energy reductions for wind 

generation below the mean and total increases for wind generation above the mean.   

 Increasing wind generation variability leads to a marginal decrease in optimal 

transmission capacity and a more dramatic decrease in optimal battery capacity (see 

Table 4.12).  Profit is reduced with increasing wind variability due to optimal 

transmission capacity and cost increases, while the capacity factor of the transmission 

line is decreasing.  The decreasing transmission capacity factor is due to increasing 

optimal transmission capacity and increasing levels of wind curtailment.  Optimal 

transmission capacity increases with increasing wind variability in order to capture higher 

levels of wind generation, which occur with increased frequency.  The level of wind 

curtailment increases with wind variability as a result of the marginal unit of transmission 

capacity being less utilized.  As mentioned earlier, there is a tradeoff between the cost of 

installing an additional unit of transmission capacity and the revenue that unit of capacity 

makes possible.  Optimal battery capacity is reduced with increasing variability, as 

charging and discharging opportunities are reduced for the battery.  Charging 

opportunities are reduced as increased variability results in more frequent periods of 

lower levels of wind generation.      
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Table 4.12 Sensitivity of Model Results to Wind Variability 

Wind 
Variability 
Downward 

Scaling 
Factor 

Wind 
Variability 

Upward 
Scaling 
Factor 

Optimal 
Transmission 

Capacity 

Optimal Battery 
Capacity 

Profit 

MW % of Base MW % of Base thousand $ % of Base 

Base Base 741 100.0 151 100.0 68,509 100.0 
0.95 1.02 746 100.7 144 95.4 68,371 99.8 
0.90 
0.85 
0.80 
0.75 

1.04 
1.06 
1.07 
1.09 

750 
755 
760 
769 

101.2 
101.9 
102.6 
103.8 

136 
129 
122 
114 

90.1 
85.4 
80.8 
75.5 

68,234 
68,096 
67,959 
67,821 

99.6 
99.4 
99.2 
99.0 

 

4.4.2.4 Price Variability 

 Sensitivity of model results to price variability is intended to show impacts from 

locations or time periods exhibiting higher levels of price volatility, as compared to the 

PJM Western Hub Data used in this analysis.  PJM Western Hub is a highly traded 

pricing point and may exhibit less price volatility than other less frequently traded 

locations.  One potential source of increased price variability in the future may be 

increases in the levels of wind generation, which has been shown to increase system 

variability.  In this paper, prices for all three markets are scaled equally in percentage 

terms.  Prices are scaled by adding the mean price level to the product of the scaling 

factor and the deviation from the mean price level in period t.  This scaling method 

increases prices in periods having base case prices above the mean and decreases prices 

for periods with base case prices below the mean, while still preserving the mean price 

levels of the base case.  A scaling method which preserves the mean base case price level 

is important, as it allows results to be driven by changes in variability and not changes in 

average price.  This approach does not prevent negative prices, but these occur in the data 

before the scaling is performed.   

 Increased levels of price variability lead to increased arbitrage opportunities for 

the battery storage device and large increases in optimal battery capacity (see Table 

4.13).  While variability in wind generation impacts the ability of the battery to charge 

and discharge and ultimately reduces optimal battery capacity, increasing price variability 

does not impact the charging and discharging ability of the battery but increases the 
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revenue per unit of energy sold.  Revenue per unit of battery capacity increases with 

variability from increasing price spreads between charging and discharging.  Optimal 

transmission capacity increases with price variability as revenue is increased from the 

battery.  The additional revenue generated by the increased spread in prices increases the 

optimal transmission capacity as the additional revenue made possible from a marginal 

increase in transmission capacity exceeds the cost of that unit of capacity.  Profitability of 

the wind site and battery is increased markedly with increased price variability.   

 

Table 4.13 Sensitivity of Model Results to Price Variability 

Price 
Variability 

Scaling 
Factor 

 
Optimal Transmission 

Capacity 

 
Optimal Battery 

Capacity 

 
 

Profit 
MW % of Base MW % of Base thousand $ % of Base 

Base 741 100.0 151 100.0 68,509 100.0 
1.05 789 106.5 197 130.5 69,492 101.4 
1.10 
1.15 
1.20 
1.25 

840 
874 
919 
958 

113.4 
117.9 
124.0 
129.3 

240 
274 
316 
355 

158.9 
181.5 
209.3 
235.1 

70,661 
72,005 
73,515 
75,211 

103.1 
105.1 
107.3 
109.8 

 

4.4.2.5 Summary 

 The results of the sensitivity section show some model parameters resulting in 

markedly larger impacts in percentage terms, while others do not.  Sensitivity on model 

parameters is important as it shows which parameters result in relatively larger impacts 

on optimal transmission and battery capacity levels and ultimately project profitability.  

Conducting sensitivity analysis on technological parameters, such as battery efficiency, 

can show which areas of research into battery technology may make batteries more 

competitive with other forms of energy storage or generation.  Market parameters, such 

as price variability, show it is not only important to consider average wholesale price 

when locating wind sites, but also price variability and the potential benefits of including 

some form of energy storage when a wind site is located at a relatively more volatile 

pricing point.  Ultimately, it is important to understand both technological and economic 

drivers of project analysis when considering investment decisions. 
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4.5 Conclusions 

 Simultaneously considering multiple sources of value for energy storage not only 

more accurately determines the value of this resource, but also shows the tradeoffs 

between multiple revenue streams competing for the device’s limited resources (i.e. 

capacity, charging rate, etc.).  This paper has developed and analyzed a methodology to 

value battery storage considering multiple sources of value, by locating storage at an 

intermittent form of generation.  This is only one use for energy storage.  Comparison 

across functions is necessary in order to determine the best use for energy storage and the 

tradeoffs among the various uses.   

 The results of this paper show that allowing battery storage to simultaneously 

participate in multiple markets is optimal relative to participating in any one market 

alone.  This paper is in agreement with others that using battery storage in regulation 

markets is a valuable use of this resource.  Participation of the energy storage device in 

the regulation market was modeled using PJM Interconnection’s previous regulation 

market pricing framework.  In response to Federal Energy Regulatory Commission 

(FERC) Order 755, as of October 1, 2012 PJM Interconnection implemented a new 

framework to compensate market participants for providing frequency regulation.  

Participants providing this resource are now compensated through a two part payment 

system, one part compensates for providing capacity and another for providing movement 

within a time periods known as a “mileage” component (PJM, 2012e).  This two part 

compensation system was implemented because it was determined that the old 

framework discriminated against resources which offered small capacities, but were 

capable of providing a large amount of ramping or “mileage” (FERC, 2011).   Due to a 

lack of available data the new framework was not modeled in this paper, but it would be 

of value to compare the economics under the new framework to the old. 

 An additional source of value for storage could be participation in PJM 

Interconnection’s capacity market.  This source of revenue was not considered in this 

paper, but may improve the economics of storage and offer some interesting tradeoffs 

with the other markets if a certain minimum level of energy is required to remain in the 

battery in order to receive capacity credit.  While not believed to be allowed under PJM’s 
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current market rules, allowing the combination wind generation and storage device to 

participate as a single unit may markedly improve the economics of battery storage. 

 Sensitivity on certain key parameters showed the impacts these parameters have 

on modeling results and is an important part of any modeling where variation in 

parameter values is concerned.  While given the current state of battery storage 

technology no level of battery capacity is optimal in the setting considered in this paper, 

wind site characteristics (wind variability) and market conditions (price variability) had 

non-trivial impacts on profitability and the optimal level of installed battery storage.  

Sensitivity analysis highlights the importance of project specific characteristics when 

determining the optimal level and profitability of large scale battery storage.   

 In this essay a few assumptions abstract from reality. In particular, perfect 

foresight is assumed for prices, wind generation, and the dispatch to contract ratio.  In 

reality these model parameters are random variables and are not known before supply and 

storage decisions are made.  Assuming perfect foresight for these parameters provides an 

upper-bound on profitability and is a baseline for future comparisons with models that do 

not assume perfect foresight.  Assuming perfect foresight for wind generation, prices, and 

the dispatch to contract ratio likely overstates the value of energy storage.  In particular, 

the assumption of perfect foresight for the dispatch to contract ratio overstates the 

profitability of storage by allowing the battery to reserve the exact amount of energy that 

will be called for each unit of capacity sold into this market.  If the dispatch to contract 

ratio were uncertain the battery would likely store some level in excess of the 0.1 used in 

this analysis and would reduce storage capacity and energy for use in the other markets.  

Additionally, the assumption of perfect foresight likely leads to a larger optimal 

transmission capacity than would be optimal without this assumption because the 

revenues achieved assuming perfect foresight would not be achievable.  

 The results of this essay conclude that given the current state of battery 

technology, both in terms of cost and technology, and wholesale electricity market 

conditions battery storage is too expensive to be competitive.  In the future a 

breakthrough in battery technology may lead to large reductions in cost or market 

conditions may change to benefit energy storage.  In the model developed in this paper, 
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improvements in battery charging and discharging efficiency and increased variability in 

market prices resulted in the largest impact on profit.      
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CHAPTER 5: CONCLUSIONS 

Wind power has emerged as the preferred choice for non-hydro renewable 

capacity to meet states’ Renewable Portfolio Standards (RPS), accounting for 94% of 

RPS capacity additions from 1998 through 2009 (Wiser, Barbose, and Holt, 2010).  If this 

trend continues, wind power will likely comprise a larger share of electricity generation 

portfolios.  While the benefits of wind generation are well known, some drawbacks are 

still being understood as wind power is integrated into the power grid at increasing levels.  

The primary difference between wind generation and other forms of generation is the 

intermittent, and somewhat unpredictable, aspect of this resource. The majority of 

research on wind generation technology has been focused on this difference.  The 

research completed through this dissertation is no exception, with the intermittent aspect 

of wind power playing a role in the outcomes of each of the three essays.   

 

5.1 Summary of Essays 

 This dissertation improves the understanding of how to better plan for and utilize 

wind power.  The somewhat uncontrollable aspect of wind generation makes it important 

to consider the relationship between this resource and load, and also how the operation of 

other non-wind generation resources may be affected.  The first essay is focused on 

planning for increased levels of installed wind capacity and the impact it has on the 

optimal mix of other non-wind generation resources.  The second essay develops a 

framework to better plan the commitment and implement the dispatching of non-wind 

generation resources while considering the unpredictable nature of wind generation and 

the computational burden of considering the entire power system.  The final essay values 

battery energy storage coupled with wind generation through a co-optimization 
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framework which simultaneously values the combination wind site and battery 

considering multiple sources of revenue.  

 

5.1.1 Conclusions for Essay One: Determining the Impact of Wind on System Costs via 

the Temporal Patterns of Load and Wind Generation 

The first essay shows the importance of considering the relationship wind 

generation exhibits relative to load and how this impacts the optimal mix of non-wind 

resources.  Using Indiana as a case study it is shown that wind generation exhibits a 

strong negative correlation with Indiana load, and this relationship directly affects 

resource requirements for other forms of generation. The first major conclusion from this 

research is a stronger negative correlation (as wind capacity expands) will lead to an 

increase in needs for peaking capacity because wind generation will typically not be 

available at full capacity during peak demand.  A higher capacity factor of the wind site 

will also reduce other resource needs. 

 This leads to the next important characteristic of a wind site.  In addition to 

energy requirements, a higher capacity factor can affect capacity requirements, as well.  

The capacity factor is the ratio of how much electricity is generated given a particular 

level of capacity divided by the amount of electricity that could have been generated if 

the unit was operating at full capacity continuously, with a larger number representing 

more generation per unit of capacity.  Given two sites exhibiting the same correlation 

with load, the site with a higher capacity factor will typically be generating more 

electricity during the annual peak, which will have a direct effect on capacity 

requirements. In summary, when considering the addition of wind resources, sites that are 

more closely correlated with load and exhibit a higher capacity factor will generally lead 

to the largest reduction in capacity and energy needs from other generation resources. 

 In this essay, total costs increase with wind capacity because reductions in 

variable costs from additional wind capacity are not sufficient to offset the increases in 

capital costs for all scenarios. The results of the model showed that for all wind 

expansion scenarios, wind capacity is not cost-effective regardless of the level of the 

wind production tax credit and carbon prices that were considered.  Since no positive 
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level of wind capacity was deemed cost-effective, any level of positive wind capacity will 

lead to increases in retail rates, although these increases (sometimes small in percentage 

terms) may be determined by policymakers to be an acceptable price to pay in order to 

foster wind power development.   

The analysis does not consider the transmission network, which would likely 

negatively impact optimal capacity and generation levels.  Other technologies to aid wind 

generation were not considered in this paper. For example, some form of energy storage 

could potentially make wind generation more cost-effective by shifting energy generated 

from wind from lower value, off-peak periods to higher value, on-peak periods, resulting 

in a larger reduction in capacity needs from non-wind generation sources.  This aspect is 

addressed in essay three. 

 

5.1.2 Conclusions for Essay Two: Modified Unit Commitment in Response to Wind 

Forecasting Errors 

The second essay demonstrates that a modified stochastic model (developed in 

this essay) is capable of achieving expected costs, which are in the range of the full 

stochastic model, while dramatically reducing the size of the model.  An important 

conclusion of this essay is the importance of considering the location of the wind site 

within the transmission network and the effect the network has on the ramping capability 

provided by other units in the system.  The modified stochastic model is able to capitalize 

on the use of key constraints in the system to achieve an expected cost for the UC-ED 

problem, which is nearly as low as the full stochastic model and markedly lower than the 

deterministic model. 

Comparisons across the three models are made using two test systems.  While the 

magnitude of the benefits achieved in this paper are dependent on the underlying test 

system, the cost reductions of the modified stochastic model relative to the deterministic 

model are in the range of the full stochastic model for both test systems considered.  

Also, the reduction in problem size of the modified stochastic model relative to the 

stochastic model is dependent on the number of transmission lines included in the 

modified problem.  The appropriate number of binding or near binding transmission lines 
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to include in the modified problem will depend on the system and may require further 

simulation to determine an appropriate proximity for inclusion. 

 

5.1.3 Conclusions for Essay Three: Valuation of Energy Storage with Wind Generation 

The third essay developed and analyzed a methodology to value battery storage 

considering multiple sources of value, by locating storage in close proximity to an 

intermittent source of generation.  Given the current state of battery storage technology, 

no level of battery capacity is optimal in the setting considered in this paper.  The results 

presented in this paper are dependent on a technological breakthrough that substantially 

reduces battery cost.  Tradeoffs are shown between the multiple revenue streams 

competing for the devices limited resources (i.e. capacity, charging rate, etc.).  Sensitivity 

on certain key parameters showed the impacts these parameters have on modeling results 

and is an important part of any modeling where parameter value uncertainty is a concern.  

The results show wind site characteristics (wind variability) and market conditions (price 

variability) have non-trivial impacts on profitability and the optimal level of installed 

battery storage.  Sensitivity analysis highlights the importance of project specific 

characteristics when determining the optimal level and profitability of large scale battery 

storage.  Volatility of wholesale market prices and battery losses had the largest impact 

on profit and the optimal battery and transmission line capacities.   

This essay only considers one setting for energy storage (i.e., locating storage 

near a wind site), though comparison across settings (i.e., locating storage somewhere 

else in the network) is also necessary in order to determine the best location for energy 

storage and the tradeoffs among the various locations.  For example, energy storage could 

participate in the three markets considered in this paper, but be located near a load center.  

An additional source of value for storage could be participation in PJM Interconnection’s 

capacity market.  This source of revenue was not considered in this paper, but may 

improve the economics of storage and offer some interesting tradeoffs with the other 

markets if a certain minimum level of energy is required to remain in the battery in order 

to receive capacity credit.  This essay only considers a perfect forecast for wind 

generation and prices in the three markets, while not considering perfect foresight would 



 104

likely impact optimal battery capacity and use.  Hence, the estimates of storage value are 

an upper bound on the true value. 

 

5.2 Future Work 

Future work could improve the first and third essays by not assuming a perfect 

wind forecast, although assuming perfect foresight for wind generation provides a 

valuable baseline for comparison.  The second essay which focused on the impact of the 

wind forecasting error shows that considering the error will likely alter the results of the 

perfect foresight case in these models.   

In the first essay the transmission network is not considered.  Including the 

transmission network in future models may show some additional tradeoffs between 

adding wind capacity in-state versus outside of Indiana, in addition to the capacity factor 

effects and the correlations among wind sites.  Also, results may be affected by the 

existing mix of generation resources in Indiana.  A state with a higher fraction of peaking 

capacity may be more suitable for siting wind capacity because the peaking units can be 

used to compensate for wind intermittency.     

The unit commitment models used in the second essay may be expanded to more 

than two periods and approach a more realistic rolling type model which covers many 

periods.  The unit commitment stage usually commits units a day in advance for each 

hour of the next operating day, so considering the impact of the wind forecasting error on 

multiple periods may provide a more accurate cost of this error. 

While the models used in the three essays leave room for further expansion, they 

have provided a valuable contribution and provide a good baseline for comparison.  If 

wind power continues to be the preferred renewable technology, then resources will need 

to continue to be directed towards understanding and utilizing this resource.     
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Table A1. Generator Offers and Operational Parameters 

Generating Unit 
Price 

($/MWh) 
Capacity 

(MW) 
Ramp 

(MW/period) 
G1 201 770 50 
G2 200 1,100 55 
G3 202 2,200 100 
G4 75 3,000 10 
G5 49 2,000 200 
G6 248 1,000 300 
G7 250 1,000 15 
G8 20 820 15 
G9 0 1,000 . 
G10 26 900 50 

 
 

Table A2. System Load 

Load 
Load 

(MWh) 
L1 400 
L2 1,500 
L3 2,500 
L4 2,000 
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Table A3. Transmission Line Limits 

Line 
Capacity 

(MW) 
1 300 
2 2,000 
3 500 
4 1,000 
5 500 
6 200 
7 400 
8 1,500 
9 1,600 
10 800 
11 850 
12 1,500 
13 1,300 
14 600 
15 700 
16 900 
17 1,800 
18 1,200 
19 800 
20 1,000 
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Table A4. Power Transfer Distribution Factors (PTDFs) used in 14-bus Test System 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bus
Line B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

1 0.666 -0.172 -0.081 -0.002 0.055 0.036 0.008 0.008 0.014 0.018 0.027 0.034 0.033 0.022
2 0.334 0.172 0.081 0.002 -0.055 -0.036 -0.008 -0.008 -0.014 -0.018 -0.027 -0.034 -0.033 -0.022
3 0.228 0.256 -0.304 0.077 0.125 0.109 0.086 0.086 0.090 0.093 0.101 0.107 0.106 0.097
4 0.235 0.292 0.092 -0.082 0.019 -0.015 -0.064 -0.064 -0.054 -0.047 -0.031 -0.018 -0.021 -0.040
5 0.202 0.280 0.131 0.003 -0.089 -0.058 -0.014 -0.014 -0.022 -0.029 -0.043 -0.055 -0.053 -0.036
6 -0.022 0.006 0.446 -0.173 -0.125 -0.141 -0.165 -0.165 -0.160 -0.157 -0.149 -0.143 -0.144 -0.153
7 -0.148 -0.068 0.159 0.355 -0.450 -0.176 0.211 0.211 0.135 0.080 -0.046 -0.151 -0.132 0.018
8 0.261 0.264 0.272 0.279 0.250 0.044 -0.373 -0.373 -0.190 -0.149 -0.054 0.025 0.011 -0.102
9 0.100 0.102 0.107 0.111 0.094 -0.024 -0.066 -0.066 -0.159 -0.135 -0.081 -0.035 -0.043 -0.108

10 0.139 0.134 0.121 0.110 0.156 -0.520 -0.061 -0.061 -0.151 -0.216 -0.365 -0.490 -0.468 -0.289
11 0.101 0.099 0.091 0.084 0.112 0.307 -0.019 -0.019 -0.073 -0.183 -0.434 0.277 0.254 0.070
12 0.008 0.008 0.007 0.006 0.010 0.039 -0.009 -0.009 -0.017 -0.007 0.015 -0.512 -0.160 -0.080
13 0.029 0.028 0.024 0.020 0.035 0.135 -0.033 -0.033 -0.060 -0.026 0.053 -0.256 -0.561 -0.279
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 0.000 0.000
15 0.011 0.014 0.022 0.029 0.000 -0.206 0.377 0.377 -0.440 -0.399 -0.304 -0.225 -0.239 -0.352
16 0.149 0.152 0.159 0.166 0.138 -0.057 0.269 0.269 0.323 -0.567 -0.316 -0.027 -0.004 0.180
17 -0.038 -0.036 -0.031 -0.026 -0.044 -0.174 0.042 0.042 0.078 0.033 -0.068 -0.233 -0.279 -0.641
18 -0.101 -0.099 -0.091 -0.084 -0.112 -0.307 0.019 0.019 0.073 0.183 -0.566 -0.277 -0.254 -0.070
19 0.008 0.008 0.007 0.006 0.010 0.039 -0.009 -0.009 -0.017 -0.007 0.015 0.488 -0.160 -0.080
20 0.038 0.036 0.031 0.026 0.044 0.174 -0.042 -0.042 -0.078 -0.033 0.068 0.233 0.279 -0.359
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Essay 1: GAMS Code for Capacity Planning Model  
 
option lp = cplex; 
option Limrow = 0; 
option Limcol = 0; 
 
* Create a .gdx file from the .xlsx file '2004_10_min_indiana_load.xlsx' 
* Parameter 'load_04(r)' is Indiana ten minute load for 2004 scaled to 2025 
$CALL GDXXRW.EXE 2004_10_min_indiana_load.xlsx set=t rng=D2:D52525 rdim=1 
par=load_04 rng=D2:E52525 rdim=1 
* Loads the .gdx file into GAMS 
* Creating parameter 'load_04' 
$GDXIN 2004_10_min_indiana_load.gdx 
set t(*); 
$LOAD t 
parameter load_04(t); 
$LOAD load_04 
$GDXIN 
 
* Create a .gdx file from the .xlsx file '2005_10_min_indiana_load.xlsx' 
* Parameter 'load_05(r)' is Indiana ten minute load for 2005 scaled to 2025 
$CALL GDXXRW.EXE 2005_10_min_indiana_load.xlsx par=load_05 rng=D2:E52525 
rdim=1 
* Loads the .gdx file into GAMS 
* Creating parameter 'load_05' 
$GDXIN 2005_10_min_indiana_load.gdx 
parameter load_05(t); 
$LOAD load_05 
$GDXIN 
 
* Create a .gdx file from the .xlsx file '2006_10_min_indiana_load.xlsx' 
* Parameter 'load_06(r)' is Indiana ten minute load for 2006 scaled to 2025 
$CALL GDXXRW.EXE 2006_10_min_indiana_load.xlsx par=load_06 rng=D2:E52525 
rdim=1 
* Loads the .gdx file into GAMS 
* Creating parameter 'load_06' 
$GDXIN 2006_10_min_indiana_load.gdx 
parameter load_06(t); 
$LOAD load_06 
$GDXIN 
 
* Create a .gdx file from the .xlsx file '2004_10_min_wind_gen.xlsx' 
$CALL GDXXRW.EXE 2004_10_min_wind_gen.xlsx set=w rng=E1:K1 cdim=1 
par=wnd_gen_04 rng=D1:K52525 cdim=1 rdim=1 
* Loads the .gdx file into GAMS 



 115

$GDXIN 2004_10_min_wind_gen.gdx 
set w(*); 
$LOAD w 
parameter wnd_gen_04(t,w); 
$LOAD wnd_gen_04 
$GDXIN 
 
$CALL GDXXRW.EXE 2005_10_min_wind_gen.xlsx par=wnd_gen_05 
rng=D1:K52525 cdim=1 rdim=1 
* Loads the .gdx file into GAMS 
$GDXIN 2005_10_min_wind_gen.gdx 
parameter wnd_gen_05(t,w); 
$LOAD wnd_gen_05 
$GDXIN 
 
$CALL GDXXRW.EXE 2006_10_min_wind_gen.xlsx par=wnd_gen_06 
rng=D1:K52525 cdim=1 rdim=1 
* Loads the .gdx file into GAMS 
$GDXIN 2006_10_min_wind_gen.gdx 
parameter wnd_gen_06(t,w); 
$LOAD wnd_gen_06 
$GDXIN 
 
* Create a .gdx file from the .xlsx file 'Wind_Data_Existing_PPA_Sites.xlsx' 
* Set 'k' / 2004 2005 2005 / 
* Set 'm' wind capacity levels 
* Set 't' hour of year 
$CALL GDXXRW.EXE wnd_expnsn_scnrs.xlsx dset=n rng=A3:A54 rdim=1 dset=m 
rng=B3:B54 rdim=1 par=wnd_scnrs rng A2:I54 rdim=2 cdim=1 
* Loads the .gdx file into GAMS 
* Creating sets 'k','m','t' and parameter 'wnd_scnrs' 
$GDXIN wnd_expnsn_scnrs.gdx 
set n(*),m(*); 
$LOAD n m 
parameter wnd_scnrs(n,m,w); 
$LOAD wnd_scnrs 
$GDXIN 
 
set k /y2004,y2005,y2006/; 
 
parameter load(t,k) 
                 wind(t,w,k); 
 
load(t,'y2004')=load_04(t); 
load(t,'y2005')=load_05(t); 
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load(t,'y2006')=load_06(t); 
 
wind(t,w,'y2004')=wnd_gen_04(t,w); 
wind(t,w,'y2005')=wnd_gen_05(t,w); 
wind(t,w,'y2006')=wnd_gen_06(t,w); 
 
option clear=load_04; 
option clear=load_05; 
option clear=load_06; 
option clear=wnd_gen_04; 
option clear=wnd_gen_05; 
option clear=wnd_gen_06; 
 
alias(t,tt,ttt); 
 
set i types of generation         / peak,cycle,base,wind / 
    ii(i) generation technologies / peak,cycle,base / 
    y generation vintage          / new,exstng /; 
 
parameter cap_cst(ii)   annualized capital cost by type of generation 
          var_cst(ii,y)     variable cost by type of generation 
          exst_cap(ii)     existing capacity levels by type of generation 
          hl_1             breakeven hour between peak and cycle cap 
          hl_2             breakeven hour between cycle and base cap 
          ldnw(t)           hourly load net of hourly wind generation 
          ldnw2(t)         hourly load net of hourly wind generation 
          ldnw3(t)          hourly load net of wind duration curve 
          rlnw(t)         rank of hourly load net of wind 
          a                 index variable 
          b                 index variable 
          c                 index variable 
          cap_lnw(ii)       capacity needs by generation type for load net of wind 
          clnw_1            capacity corresponding to breakeven hour between peak 

and cycle for lnw curve 
          clnw_2            capacity corresponding to breakeven hour between cycle 

and base for lnw curve 
          new_cap_lnw(ii)   new capacity needs by generaton type for lnw curve 
          tot_cap_lnw(ii)   total capacity existing plus new for load net of wind 
          ramp_lim_lnw(ii,y)  ramping limit for generator 'ii' 
          ramp_lim_wind(t)  ramping limit for wind generation 
          ramp(ii,y)        ramping limit on generation by type (MW per period) 
          disp_cst(k,m,n)   total dispatch cost for LDC cap levels 
          disp_cst2(k,m,n)  total dispatch cost for endogenous cap levels 
          load2(t)          hourly load 
          wind_gen(t,k,m,n)   indiana wind generation 
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          unit_gnrtn(k,m,n,ii,y)  annual unit generation by technology and vintage 
          unit_gnrtn2(k,m,n,ii,y)  annual unit generation by technology and vintage 
          unit_cap(ii,k,m,n)  unit capacity by technology 
          unit_cap2(ii,k,m,n)  unit capacity by technology 
          tot_var_cst(ii,y,k,m,n)   total annual variable cost by technology 
          tot_var_cst2(ii,y,k,m,n)   total annual variable cost by technology 
          tot_cap_cst(ii,k,m,n)   total annual capital cost by technology 
          tot_cap_cst2(ii,k,m,n)   total annual capital cost by technology 
          wnd_crtlmnt(k,m,n)    level of wind curtailment by period 
          wnd_crtlmnt2(k,m,n)   level of wind curtailment by period; 
 
cap_cst("peak")  = 110353.33; 
cap_cst("cycle") = 170100.00; 
cap_cst("base")  = 542276.67; 
*cap_cst("wind")  = 403430.00; 
var_cst("peak","new")     = 62.26; 
var_cst("cycle","new")    = 37.66; 
var_cst("base","new")     = 25.34; 
var_cst("peak","exstng")  = 67.27; 
var_cst("cycle","exstng") = 42.72; 
var_cst("base","exstng")  = 24.65; 
exst_cap("peak")  = 3585*0.9; 
exst_cap("cycle") = 2500*0.9; 
exst_cap("base")  = 16426*0.9; 
ramp("peak","new") = 1; 
ramp("cycle","new") = 0.7; 
ramp("base","new") = 0.4; 
ramp("peak","exstng") = 1; 
ramp("cycle","exstng") = 0.6; 
ramp("base","exstng") = 0.1; 
 
* calculate breakeven hours for generation cost per MW * 
hl_1 = round((cap_cst("peak")-cap_cst("cycle"))/(var_cst("cycle","new")-
var_cst("peak","new"))); 
hl_2 = round((cap_cst("cycle")-cap_cst("base"))/(var_cst("base","new")-
var_cst("cycle","new"))); 
 
* equations used in economic dispatch 
equations cost            total cost 
           cost2 total cost endogenous capacity 
                enrgy_bal(t) supply meets demand in period 't' 
               ramp_up(ii,y,t) ramping up limit for generator 'i' in period 't' 
               ramp_dn(ii,y,t) ramping down limit for generator 'i' in period 't' 
              enrgy_bal2(t) supply meets demand in period 't' 
           ramp_up2(ii,y,t)  ramping up limit for generator 'i' in period 't' 
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           ramp_dn2(ii,y,t)  ramping down limit for generator 'i' in period 't' 
           cpcty(ii,y,t)     capacity level by type of generation; 
 
variables tot_cost    total cost of meeting demand 
           gen(ii,y,t) generation supplied by unit 'i' in period 't' 
           wgen(t)  wind generation in period 't' 
           cap(ii,y)  generation capacity for endogenous capacity model 
           gen2(ii,y,t) generation supplied by unit 'i' in period  't'; 
 
cost..  tot_cost =e= sum(t,sum(ii,sum(y,var_cst(ii,y)*gen(ii,y,t)))); 
enrgy_bal(t)..  sum(y,sum(ii,gen(ii,y,t)))+wgen(t) =g= load2(t); 
ramp_up(ii,y,t)$(ord(t) ne 1)..  gen(ii,y,t)-gen(ii,y,t-1) =l= ramp_lim_lnw(ii,y); 
ramp_dn(ii,y,t)$(ord(t) ne 1)..  gen(ii,y,t)-gen(ii,y,t-1) =g= -ramp_lim_lnw(ii,y); 
 
cost2..  tot_cost =e=     
sum(ii,cap_cst(ii)*cap(ii,"new"))+sum(t,sum(ii,sum(y,var_cst(ii,y)*gen2(ii,y,t)))); 
enrgy_bal2(t)..  sum(y,sum(ii,gen2(ii,y,t)))+wgen(t) =g= load2(t); 
ramp_up2(ii,y,t)$(ord(t) ne 1)..  gen2(ii,y,t)-gen2(ii,y,t-1) =l= cap(ii,y)*ramp(ii,y); 
ramp_dn2(ii,y,t)$(ord(t) ne 1)..  gen2(ii,y,t)-gen2(ii,y,t-1) =g= -(cap(ii,y)*ramp(ii,y)); 
cpcty(ii,y,t)..  gen2(ii,y,t) =l= cap(ii,y); 
 
model dispatch /cost,enrgy_bal,ramp_up,ramp_dn/; 
 
**************************************************** 
* create load and load net of wind duration curves * 
**************************************************** 
parameter Ld_Index(t); 
parameter Ld_Index2(t); 
parameter Ld_Sorted(t); 
 
loop(n, 
loop(k, 
* create load net of wind duration curve 
loop(m, 
wind_gen(t,k,m,n)=sum(w,wind(t,w,k)*wnd_scnrs(n,m,w)); 
ldnw(t) = load(t,k) - wind_gen(t,k,m,n); 
ldnw2(t)=ldnw(t); 
* write symbol A to gdx file 
execute_unload "rank_in.gdx", ldnw; 
* sort symbol; permutation index will be named A also 
execute 'gdxrank rank_in.gdx rank_out.gdx'; 
* load the permutation index 
execute_load "rank_out.gdx", Ld_Index=ldnw; 
Ld_Index2(t) = card(t) - Ld_Index(t) +1; 
* create a sorted version 
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Ld_Sorted(t + (Ld_Index2(t)- Ord(t))) = ldnw(t); 
 
**************************************************** 
* determine optimal capacity levels                * 
**************************************************** 
loop(t, 
clnw_1$(ord(t) eq 6*hl_1) = Ld_Sorted(t); 
clnw_2$(ord(t) eq 6*hl_2) = Ld_Sorted(t); 
); 
* total capacity requirements for load and load net of wind curves 
cap_lnw("peak")  = max(0,Ld_Sorted("1")-clnw_1); 
cap_lnw("cycle") = max(0,clnw_1-clnw_2); 
cap_lnw("base")  = max(0,clnw_2); 
* new capacity requirements calculated by net of total requirements and existing levels 
new_cap_lnw("base")  = max(0,cap_lnw("base")-exst_cap("base")); 
new_cap_lnw("cycle") = max(0,cap_lnw("cycle")-exst_cap("cycle")-
max(0,exst_cap("base")-cap_lnw("base"))); 
new_cap_lnw("peak")  = max(0,cap_lnw("peak")-
exst_cap("peak")+min(0,cap_lnw("cycle")-exst_cap("cycle")-max(0,exst_cap("base")-
cap_lnw("base")))); 
* total capacity by generation type for economic dispatch 
tot_cap_lnw("peak")  = exst_cap("peak")+new_cap_lnw("peak"); 
tot_cap_lnw("cycle") = exst_cap("cycle")+new_cap_lnw("cycle"); 
tot_cap_lnw("base")  = exst_cap("base")+new_cap_lnw("base"); 
 
**************************************************** 
* economic dispatch for load and load net of wind  * 
**************************************************** 
ramp_lim_lnw(ii,"new") = new_cap_lnw(ii)*ramp(ii,"new"); 
ramp_lim_lnw(ii,"exstng") = exst_cap(ii)*ramp(ii,"exstng"); 
ramp_lim_wind(t) = wind_gen(t,k,m,n); 
gen.lo(ii,y,t) = 0; 
gen.up(ii,"new",t) = new_cap_lnw(ii); 
gen.up(ii,"exstng",t) = exst_cap(ii); 
wgen.lo(t)   = 0; 
wgen.up(t)   = wind_gen(t,k,m,n); 
load2(t)=load(t,k); 
solve dispatch using lp minimizing tot_cost; 
disp_cst(k,m,n) = tot_cost.l; 
unit_gnrtn(k,m,n,ii,y) = sum(t,gen.l(ii,y,t)); 
unit_cap(ii,k,m,n) = tot_cap_lnw(ii); 
tot_var_cst(ii,y,k,m,n) = sum(t,gen.l(ii,y,t)*var_cst(ii,y)); 
tot_cap_cst(ii,k,m,n) = new_cap_lnw(ii)*cap_cst(ii); 
wnd_crtlmnt(k,m,n) = sum(t,wind_gen(t,k,m,n)-wgen.l(t)); 
); ); ); 
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Essay 2: GAMS Code for 4-Bus Unit Commitment Models 
 
Option LP = CPLEX; 
Option limrow = 0; 
Option limcol = 0; 
 
*set of nodes n 
Set n /1*4/; 
*set of generators 
Set g /1*5/; 
alias(g,gg); 
*set of lines l 
set l /1*5/; 
*set of time periods 
set t /1*2/; 
*set of states of nature 
Set s /1*100/; 
*set of models (1=naive,2=modified,3=full dsp) 
Set r /1*3/; 
 
Parameter offer(g) Offer Prices different Generators /1 30,2 1,3 150,4 25,5 40/; 
Parameter ql(g,n) Lower MW limit of the generators /2.1 100/; 
Parameter qu(g,n) Upper MW limit of the generators /1.1 500,2.1 100,3.2 400,4.3 150,5.4 
100/; 
Parameter d(n) Demand at Node n (MW) 
/ 
2   253 
3   100 
/; 
 
Parameter PTDF(n,l) Distribution factors for node n on line l; 
Table PTDF(n,l) 
       1         2         3         4         5 
1      0.2829    0.1405    0.1767   -0.0233   -0.0829 
2      0.1100   -0.0648   -0.4452    0.3548    0.0900 
3     -0.0728   -0.2818   -0.0454   -0.2454    0.2728 
4     -0.6029    0.0656    0.1373   -0.0627   -0.1971 
; 
 
Parameter PTDF2(g,l) Distribution factors for generator g on line l; 
Table PTDF2(g,l) 
       1         2         3         4         5 
1      0.2829    0.1405    0.1767   -0.0233   -0.0829 
2      0.2829    0.1405    0.1767   -0.0233   -0.0829 
3      0.1100   -0.0648   -0.4452    0.3548    0.0900 
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4     -0.0728   -0.2818   -0.0454   -0.2454    0.2728 
5     -0.6029    0.0656    0.1373   -0.0627   -0.1971 
; 
 
Parameter T_Cap(l) 
/ 
1   150 
2   150 
3   146 
4   110 
5   100 
/; 
 
Parameter Ramp(g) 
/ 
1  5 
2  10000 
3  15 
4  16 
5  30 
/; 
 
Parameter  Gen_Out1(r,g) 
           Gen_Out2(r,s,g) 
           Tot_Cost1(r) 
           Tot_Cost2(s,r) 
           Tot_Cost(s,r) 
           Line_Lvl1(r,l) 
           Line_Lvl2(r,s,l) 
           Ramp_Up_Pos_Line(r,l) 
           Ramp_Dn_Pos_Line(r,l) 
           Ramp_Up_Neg_Line(r,l) 
           Ramp_Dn_Neg_Line(r,l) 
           LMP_ED(r,s,n); 
 
************************************************** 
* Create the set of wind forecast errors                                    * 
************************************************** 
Scalar  WL lower bound of wind forecast error / 0 / 
        WU upper bound of wind forecast error / 15 / 
        ETC2 expected total cost; 
Parameter w_err(s) realizations of the wind forecast error; 
w_err('1') = WL; 
 
loop(s, 
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w_err(s) = w_err(s-1)+((WU - WL)/card(s)); 
); 
w_err(s) = w_err(s) - (w_err(s)-w_err(s-1))/2; 
 
 
************************************************** 
* The naive period 1 dispatch problem                                    * 
************************************************** 
Variable  Z1; 
Positive Variable p(g,n) power output of generator g in period 1; 
p.up(g,n) = qu(g,n); 
p.lo(g,n) = ql(g,n); 
 
Equations 
OBJ        Objective function 
LB         supply equals demand in MW at bus n 
TL_UP(l)   the upper capacity bound on transmission line n 
TL_LW(l)   the lower capacity bound on transmission line n 
; 
 
OBJ..         Z1 =e= sum(g,offer(g)*sum(n,p(g,n))); 
LB..          sum(n,sum(g,p(g,n))-d(n)) =e= 0; 
TL_UP(l)..    sum(n,PTDF(n,l)*(sum(g,p(g,n))-d(n))) =l= T_Cap(l); 
TL_LW(l)..  sum(n,PTDF(n,l)*(sum(g,p(g,n))-d(n))) =g= -T_Cap(l); 
 
Model dispatch1 /OBJ,LB,TL_UP,TL_LW/; 
Solve dispatch1 using LP MINIMIZING Z1; 
 
Tot_Cost1('1')=Z1.l; 
Line_Lvl1('1',l)=sum(n,PTDF(n,l)*(sum(g,p.l(g,n))-d(n))); 
Ramp_Up_Pos_Line('1',l)=sum(g$(PTDF2(g,l)>0),PTDF2(g,l)*min(sum(n,qu(g,n)-
p.l(g,n)),Ramp(g))); 
Ramp_Dn_Pos_Line('1',l)=sum(g$(PTDF2(g,l)>0),PTDF2(g,l)*min(sum(n,p.l(g,n)-
ql(g,n)),Ramp(g))); 
Ramp_Up_Neg_Line('1',l)=sum(g$(PTDF2(g,l)<0),PTDF2(g,l)*min(sum(n,qu(g,n)-
p.l(g,n)),Ramp(g))); 
Ramp_Dn_Neg_Line('1',l)=sum(g$(PTDF2(g,l)<0),PTDF2(g,l)*min(sum(n,p.l(g,n)-
ql(g,n)),Ramp(g))); 
 
************************************************** 
* Modification to naive dispatch using DSP                            * 
************************************************** 
Parameter a(g) generation levels from initial problem; 
a('1') = p.l('1','1'); 
a('2') = p.l('2','1'); 
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a('3') = p.l('3','2'); 
a('4') = p.l('4','3'); 
a('5') = p.l('5','4'); 
Gen_Out1('1',g) = a(g); 
 
Variables Z2 expected total cost 
          dg(g)    generation modification to initial dispatch 
          h(g,s)   response of generator g to wind error in state s; 
 
dg.up(g) = sum(n,qu(g,n))-a(g); 
dg.lo(g) = -(a(g)-sum(n,ql(g,n))); 
dg.up('2') = qu('2','1')-a('2'); 
h.up(g,s) = ramp(g); 
h.lo(g,s) = -ramp(g); 
 
* allowing for wind curtailment 
*h.up('2',s) = w_err(s); 
*h.lo('2',s) = -(a('2')-ql('2','1')); 
 
Equations 
obj2                objective function 
sys_bal1            generation and load remain equal in period 1 
sys_bal2(s)         generation and load remain equal in each state of period 2 
tline_constrt1      transmission line capacity constraint is not violated in period 1 
tline_constrt2(s)   transmission line capacity constraint is not violated in each state of 

period 2 
h_up(g,s)           upper bound on the response in the second period from generator g in 

state s 
h_lo(g,s)           lower bound on the response in the second period from generator g in 

state s 
h_up_wnd(g,s)     upper bound on the response in the second period from wind site in 

state s 
; 
 
obj2..                Z2 =e= sum(g,offer(g)*dg(g)) + 

sum(s,sum(g,(1/card(s))*offer(g)*h(g,s))); 
sys_bal1..            sum(g,dg(g)) =e= 0; 
sys_bal2(s)..         sum(g,h(g,s)) =e= 0; 
tline_constrt1..      sum(g,PTDF2(g,'3')*dg(g))+sum(g,PTDF2(g,'3')*a(g))-

sum(n,PTDF(n,'3')*d(n)) =l= T_Cap('3'); 
tline_constrt2(s)..   sum(g,PTDF2(g,'3')*h(g,s))+sum(g,PTDF2(g,'3')*a(g))-

sum(n,PTDF(n,'3')*d(n)) =l= T_Cap('3'); 
h_up(g,s)$(ord(g) ne 2).. h(g,s) =l= sum(n,qu(g,n))-a(g)-dg(g); 
h_lo(g,s)..           h(g,s) =g= -(a(g)+dg(g)-sum(n,ql(g,n))); 
h_up_wnd(g,s)$(ord(g) eq 2).. h(g,s) =l= sum(n,qu(g,n))+w_err(s)-(a(g)+dg(g)); 
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Model dispatch2 
/obj2,sys_bal1,sys_bal2,tline_constrt1,tline_constrt2,h_up,h_lo,h_up_wnd/; 
 
solve dispatch2 using lp minimizing Z2; 
 
Gen_Out1('2',g)=a(g)+dg.l(g); 
Gen_Out2('2',s,g)=Gen_Out1('2',g)+h.l(g,s); 
Tot_Cost1('2')=sum(g,offer(g)*(a(g)+dg.l(g))); 
Tot_Cost2(s,'2')=sum(g,offer(g)*Gen_Out2('2',s,g)); 
Line_Lvl1('2',l)=sum(g,PTDF2(g,l)*Gen_Out1('2',g))-sum(n,PTDF(n,l)*d(n)); 
Ramp_Up_Pos_Line('2',l)=sum(g$(PTDF2(g,l)>0),PTDF2(g,l)*min(sum(n,qu(g,n)-
p.l(g,n))-dg.l(g),Ramp(g))); 
Ramp_Dn_Pos_Line('2',l)=sum(g$(PTDF2(g,l)>0),PTDF2(g,l)*min(dg.l(g)+sum(n,p.l(g,
n)-ql(g,n)),Ramp(g))); 
Ramp_Up_Neg_Line('2',l)=sum(g$(PTDF2(g,l)<0),PTDF2(g,l)*min(sum(n,qu(g,n)-
p.l(g,n))-dg.l(g),Ramp(g))); 
Ramp_Dn_Neg_Line('2',l)=sum(g$(PTDF2(g,l)<0),PTDF2(g,l)*min(dg.l(g)+sum(n,p.l(g,
n)-ql(g,n)),Ramp(g))); 
 
************************************************** 
* Full discrete stochastic program                                            * 
************************************************** 
Parameter a3(g) 
          a4(s,g) 
          a5(g,n); 
 
Variable  Z3; 
Positive Variable p2(g,n,t,s) power output of generator g in period t and state s; 
 
p2.up(g,n,t,s) = qu(g,n); 
p2.lo(g,n,t,s) = ql(g,n); 
p2.up('2','1','2',s) = qu('2','1') + w_err(s); 
p2.lo('2','1','2',s) = 0; 
 
Equations 
OBJ3                 objective function 
LB3(t,s)             supply equals demand in MW at bus n 
TL_UP3(l,t,s)        the upper capacity bound on transmission line n 
TL_LW3(l,t,s)        the lower capacity bound on transmission line n 
RAMP_UP3(g,t,s)      generator upward ramping limits 
RAMP_DN3(g,t,s)      generator downward ramping limits 
GEN_PER_1(g,n,t,s)   restricts generation in period one to be equal across states 
; 
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OBJ3..  Z3 =e= sum(s,sum(g,sum(n,(1/card(s))*offer(g)*(p2(g,n,'2',s))))); 
LB3(t,s)..  sum(n,sum(g,p2(g,n,t,s))-d(n)) =e= 0; 
TL_UP3(l,t,s)..  sum(n,PTDF(n,l)*(sum(g,p2(g,n,t,s))-d(n))) =l= T_Cap(l); 
TL_LW3(l,t,s)..  sum(n,PTDF(n,l)*(sum(g,p2(g,n,t,s))-d(n))) =g= -T_Cap(l); 
RAMP_UP3(g,t,s)$(ord(g) ne 2 and ord(t) ne 1)..  sum(n,p2(g,n,t,s) - p2(g,n,t-1,s)) =l=                
Ramp(g); 
RAMP_DN3(g,t,s)$(ord(g) ne 2 and ord(t) ne 1)..  sum(n,p2(g,n,t,s) - p2(g,n,t-1,s)) =g= -
Ramp(g); 
GEN_PER_1(g,n,t,s)..  p2(g,n,'1',s) =e= p2(g,n,'1','1'); 
 
Model dispatch3 
/OBJ3,LB3,TL_UP3,TL_LW3,RAMP_UP3,RAMP_DN3,GEN_PER_1/; 
 
Solve dispatch3 using lp minimizing Z3; 
 
a3('1')=p2.l('1','1','1','1'); 
a3('2')=p2.l('2','1','1','1'); 
a3('3')=p2.l('3','2','1','1'); 
a3('4')=p2.l('4','3','1','1'); 
a3('5')=p2.l('5','4','1','1'); 
 
Gen_Out1('3',g) = a3(g); 
Line_Lvl1('3',l)=sum(g,PTDF2(g,l)*Gen_Out1('3',g))-sum(n,PTDF(n,l)*d(n)); 
Ramp_Up_Pos_Line('3',l)=sum(g$(PTDF2(g,l)>0),PTDF2(g,l)*min(sum(n,qu(g,n))-
a3(g),Ramp(g))); 
Ramp_Dn_Pos_Line('3',l)=sum(g$(PTDF2(g,l)>0),PTDF2(g,l)*min(a3(g)-
sum(n,ql(g,n)),Ramp(g))); 
Ramp_Up_Neg_Line('3',l)=sum(g$(PTDF2(g,l)<0),PTDF2(g,l)*min(sum(n,qu(g,n))-
a3(g),Ramp(g))); 
Ramp_Dn_Neg_Line('3',l)=sum(g$(PTDF2(g,l)<0),PTDF2(g,l)*min(a3(g)-
sum(n,ql(g,n)),Ramp(g))); 
 
a4(s,'1') = p2.l('1','1','2',s)-p2.l('1','1','1',s); 
a4(s,'2') = p2.l('2','1','2',s)-p2.l('2','1','1',s); 
a4(s,'3') = p2.l('3','2','2',s)-p2.l('3','2','1',s); 
a4(s,'4') = p2.l('4','3','2',s)-p2.l('4','3','1',s); 
a4(s,'5') = p2.l('5','4','2',s)-p2.l('5','4','1',s); 
 
Gen_Out2('3',s,g)=a4(s,g); 
Line_Lvl2('3',s,l)=sum(g,PTDF2(g,l)*Gen_Out2('3',s,g))-sum(n,PTDF(n,l)*d(n)); 
Tot_Cost1('3')=sum(g,offer(g)*a3(g)); 
display Tot_Cost1; 
LMP_ED('3',s,n)=card(s)*(LB3.m('2',s)+sum(l,PTDF(n,l)*(TL_UP3.m(l,'2',s)+TL_LW3.
m(l,'2',s)))); 
 



 126

************************************************** 
* Naive period 1 generation levels in dsp                                * 
************************************************** 
p2.lo(g,n,'1',s)=p.l(g,n); 
p2.up(g,n,'1',s)=p.l(g,n); 
p2.up('2','1','2',s) = qu('2','1') + w_err(s); 
p2.lo('2','1','2',s) = 0; 
 
Solve dispatch3 using lp minimizing Z3; 
 
a4(s,'1') = p2.l('1','1','2',s)-p.l('1','1'); 
a4(s,'2') = p2.l('2','1','2',s)-p.l('2','1'); 
a4(s,'3') = p2.l('3','2','2',s)-p.l('3','2'); 
a4(s,'4') = p2.l('4','3','2',s)-p.l('4','3'); 
a4(s,'5') = p2.l('5','4','2',s)-p.l('5','4'); 
 
Gen_Out2('1',s,g) = a4(s,g); 
Line_Lvl2('1',s,l)=sum(g,PTDF2(g,l)*Gen_Out2('1',s,g))-sum(n,PTDF(n,l)*d(n)); 
LMP_ED('1',s,n)=card(s)*(LB3.m('2',s)+sum(l,PTDF(n,l)*(TL_UP3.m(l,'2',s)+TL_LW3.
m(l,'2',s)))); 
 
************************************************** 
* Modified period 1 generation levels in dsp                           * 
************************************************** 
a5('1','1') = dg.l('1'); 
a5('2','1') = dg.l('2'); 
a5('3','2') = dg.l('3'); 
a5('4','3') = dg.l('4'); 
a5('5','4') = dg.l('5'); 
p2.lo(g,n,'1',s) = p.l(g,n)+a5(g,n); 
p2.up(g,n,'1',s) = p.l(g,n)+a5(g,n); 
p2.up('2','1','2',s) = qu('2','1') + w_err(s); 
p2.lo('2','1','2',s) = 0; 
 
Solve dispatch3 using lp minimizing Z3; 
 
a4(s,'1') = p2.l('1','1','2',s)-p2.l('1','1','1',s); 
a4(s,'2') = p2.l('2','1','2',s)-p2.l('2','1','1',s); 
a4(s,'3') = p2.l('3','2','2',s)-p2.l('3','2','1',s); 
a4(s,'4') = p2.l('4','3','2',s)-p2.l('4','3','1',s); 
a4(s,'5') = p2.l('5','4','2',s)-p2.l('5','4','1',s); 
 
Gen_Out2('2',s,g) = a4(s,g); 
Line_Lvl2('2',s,l)=sum(g,PTDF2(g,l)*Gen_Out2('2',s,g))-sum(n,PTDF(n,l)*d(n)); 
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LMP_ED('2',s,n)=card(s)*(LB3.m('2',s)+sum(l,PTDF(n,l)*(TL_UP3.m(l,'2',s)+TL_LW3.
m(l,'2',s)))); 
Parameter Gen_Out3; 
Gen_Out3(r,s,g)=Gen_Out1(r,g)+Gen_Out2(r,s,g); 
Tot_Cost2(s,r)=sum(g,offer(g)*Gen_out2(r,s,g)); 
Tot_Cost(s,r)=sum(g,offer(g)*Gen_out3(r,s,g));; 
Parameter Expected_TC2(r); 
Expected_TC2(r)=sum(s,(1/card(s))*Tot_Cost2(s,r)); 
Parameter Expected_TC(r); 
Expected_TC(r)=sum(s,(1/card(s))*Tot_Cost2(s,r))+Tot_Cost1(r); 
Parameter mod_dsp(s,g); 
mod_dsp(s,'1')= p2.l('1','1','2',s)-p2.l('1','1','1',s); 
mod_dsp(s,'2')= p2.l('2','1','2',s)-p2.l('2','1','1',s); 
mod_dsp(s,'3')= p2.l('3','2','2',s)-p2.l('3','2','1',s); 
mod_dsp(s,'4')= p2.l('4','3','2',s)-p2.l('4','3','1',s); 
mod_dsp(s,'5')= p2.l('5','4','2',s)-p2.l('5','4','1',s); 
Parameter Opt_dg(g); 
Opt_dg(g)=Gen_Out1('3',g)-Gen_Out1('1',g); 
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Essay 3: GAMS Code for Battery Energy Storage Valuation Model 
 
option limrow=0; 
option limcol=0; 
 
$CALL GDXXRW.EXE PJM_DA_RT_LMP.xlsx set=t rng=C2:C9505 rdim=1 set=r 
rng=D1:E1 cdim=1 par=DA_RT_LMP rng=C1:E8761 rdim=1 cdim=1 
$GDXIN PJM_DA_RT_LMP.gdx 
set t(*),r(*); 
$LOAD t r 
parameter DA_RT_LMP(t,r); 
$LOAD DA_RT_LMP 
$GDXIN 
 
$CALL GDXXRW.EXE PJM_RGLTN_2.xlsx set=s rng=D1:E1 cdim=1 par=RGLTN 
rng=C1:E8761 rdim=1 cdim=1 
$GDXIN PJM_RGLTN_2.gdx 
set s(*); 
$LOAD s 
parameter RGLTN(t,s); 
$LOAD RGLTN 
$GDXIN 
 
$CALL GDXXRW.EXE PJM_Wind_Gen_2.xlsx par=WND_GEN rng=C2:D8761 
rdim=1 
$GDXIN PJM_Wind_Gen_2.gdx 
parameter WND_GEN(t); 
$LOAD WND_GEN 
$GDXIN 
 
set  b set of battery capacities /1*41/ 
     y set of transmission capacities /1*51/; 
 
scalar  c_eff maximum charge rate per MW of capacity (MW per period) /0.94/ 
        d_eff maximum discharge rate per MW of capacity (MW per period) /0.94/ 
       C_B   annualized capacity cost for battery ($ per MW) /504511/ 
        batt_lf annual battery cycles /450/ 
        km_pr_ml kilometers per mile /1.60934/ 
        tln_lf life of transmission line /40/ 
       lngth length of transmission line (miles) /10/ 
        strg  battery storage per MW of battery capacity (MWh per MW) /6/ 
        c_rt  battery charge rate (MWh per MW per hour) /1/ 
        d_rt  battery discharge rate (MWh per MW per hour) /1/ 
        dcr   regulation dispatch to contract ratio /0.1/ 
        batt_cap /0/ 
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        i /0/ 
        j /5/ 
        A     annuity factor for annualized cost 
        scl_wnd wind generation scaling factor /0.2/ 
        cap_l 
        t_cost 
        scl_bcost /0.45/; 
 
A = (1-1/power(1.1,40))/0.1; 
 
parameter  p_da(t)  day-ahead energy price 
           p_rt(t)  real-time energy price 
           p_a(t)   ancillary services price; 
p_a(t) = RGLTN(t,'RMCP'); 
p_da(t) = DA_RT_LMP(t,'DA_LMP'); 
p_rt(t) = DA_RT_LMP(t,'RT_LMP'); 
 
positive variables qb(t)  the quantity of energy in the battery (MWh) 
                     q_a(t)  capacity sold from battery into ancillary services market (MW) 

qb_da(t)  energy sold from battery into day-ahead energy market 
(MWh) 

                     qb_rt(t)  energy sold from battery into real-time energy market (MWh) 
qw_rt(t) energy sold from wind site into real-time energy market 

(MWh) 
          qb_w(t)  energy stored into the battery from the wind site (MWh) 
                     x_c(t)  portion of the hour spent charging 
                     x_d(t)  portion of the hour spent discharging; 
x_c.up(t) = 1; 
x_d.up(t) = 1; 
 
variables z profit maximizing level of wind gen and battery site; 
 
equations  obj  objective of profit maxinization ($) 
             obj_II  objective of profit maxinization ($) 
             wnd_lmt(t)  upper limit on wind generation sold into real-time market (MWh) 

wnd_lmt_II(t)  upper limit on wind generation sold into real-time market 
(MWh) 

             batt_lvl(t)  level of energy stored in the battery in period 't' (MWh) 
             chrg(t)  upper limit on battery charging per period 
             chrg_II(t)  upper limit on battery charging per period 
             dchrg(t)  upper limit on battery discharging per period 
             b_cap(t)  upper limit on energy stored in the battery 
             t_cap_up(t)  upper limit on energy flow on transmission line 
             t_cap_up_II(t)  upper limit on energy flow on transmission line 
             t_cap_lw(t)  upper limit on energy flow from the market to the wind site 
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             int_var(t) 
             reg_up(t) 
             batt_lfe  restriction on battery revenue; 
 
obj..        z =e= sum(t,p_da(t)*d_eff*qb_da(t) + 

p_rt(t)*(qw_rt(t)+d_eff*qb_rt(t)+dcr*q_a(t)) + p_a(t)*q_a(t)) 
               - t_cost - scl_bcost*C_B/(batt_lf*strg)*sum(t,qb_w(t)); 
 
wnd_lmt(t)..  qw_rt(t) =l= scl_wnd*wnd_gen(t) - qb_w(t); 
batt_lvl(t)..  qb(t) =e= qb(t-1) + c_eff*qb_w(t) - (qb_da(t) + qb_rt(t) + 

(1/d_eff)*dcr*q_a(t)); 
chrg(t)..   qb_w(t) =l= c_rt*batt_cap*x_c(t); 
chrg_II(t)..  qb_w(t) =l= wnd_gen(t); 
dchrg(t)..  qb_da(t) + qb_rt(t) + dcr*q_a(t) =l= x_d(t)*d_rt*batt_cap; 
b_cap(t)..  qb(t) =l= batt_cap*strg; 
reg_up(t).. q_a(t) =l= batt_cap; 
t_cap_up(t).. qb_da(t) + qb_rt(t) + qw_rt(t) + dcr*q_a(t) =l= cap_l; 
int_var(t)..  x_c(t) + x_d(t) =l= 1; 
batt_lfe..

 sum(t,p_rt(t)*d_eff*qb_rt(t)+p_da(t)*d_eff*qb_da(t)+p_rt(t)*dcr*q_a(t)+
p_a(t)*q_a(t)) =g= scl_bcost*C_B*batt_cap; 

 
obj_II..           z =e= sum(t,p_rt(t)*qw_rt(t)) - t_cost; 
wnd_lmt_II(t)..   qw_rt(t) =l= scl_wnd*wnd_gen(t); 
t_cap_up_II(t)..   qw_rt(t) =l= cap_l; 
 
model battery /obj,wnd_lmt,batt_lvl,chrg,chrg_II,dchrg,b_cap,reg_up,t_cap_up,int_var/; 
model battery2 
/obj,wnd_lmt,batt_lvl,chrg,chrg_II,dchrg,b_cap,reg_up,t_cap_up,int_var,batt_lfe/; 
model wind /obj_II,wnd_lmt_II,t_cap_up_II/; 
 
set w 
/tot_prft,line_cap,bttry_cpcty,rev_wnd,rev_batt_da,rev_batt_rt,rev_batt_rg_cap,rev_batt_
rg_rt, 
      
enrgy_wnd,enrgy_batt_rt,enrgy_batt_da,enrgy_batt_rg,cap_batt_rg,avg_lmp_chrg,avg_l
mp_dchrg, 
      tline_cpcty_fctr,bttry_lftm,line_cst,crtld_wnd/ 
    u /wnd,batt_da,batt_rt,batt_reg_cap,batt_reg_rt/; 
 
parameter  results(b,y,w) 
           batt_chrg_lvl(t,b,y)  level of storage in the battery 
           tline_flow(b,y,t)  power flowing on the transmission line 
           enrgy(t,b,y,u)  energy sold per period by wind site and battery 
           rvne(t,b,y,u)  revenue per period by wind site and battery 
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opt_enrgy(t,b,u)  energy sold per period by wind site and battery for optimal     
tcap 

           opt_rvne(t,b,u)  revenue per period by wind site and battery; 
 
parameter results_optml(b,w); 
 
loop(b, 
cap_l = 600; 
loop(y, 
 t_cost = ((1/A)*exp(10.0841)*exp(0.5759*log(cap_l+.0001))*km_pr_ml*lngth); 
 batt_cap = i; 
if(ord(b) eq 1, 
  solve battery using lp maximizing z; 
else 
  solve battery2 using lp maximizing z; 
); 
 
tline_flow(b,y,t) = qw_rt.l(t)+d_eff*qb_da.l(t)+d_eff*qb_rt.l(t)+dcr*q_a.l(t); 
batt_chrg_lvl(t,b,y) = qb.l(t); 
 
* account for discharge losses in revenue and regulation energy sold in RT market 
results(b,y,'tot_prft') = z.l; 
results(b,y,'line_cap') = cap_l; 
results(b,y,'bttry_cpcty') = i; 
results(b,y,'rev_wnd') = sum(t,p_rt(t)*qw_rt.l(t)); 
results(b,y,'rev_batt_da') = sum(t,p_da(t)*d_eff*qb_da.l(t)); 
results(b,y,'rev_batt_rt') = sum(t,p_rt(t)*d_eff*qb_rt.l(t)); 
results(b,y,'rev_batt_rg_cap') = sum(t,p_a(t)*q_a.l(t)); 
results(b,y,'rev_batt_rg_rt') = sum(t,p_rt(t)*dcr*q_a.l(t)); 
results(b,y,'enrgy_wnd') = sum(t,qw_rt.l(t)); 
results(b,y,'enrgy_batt_rt') = sum(t,d_eff*qb_rt.l(t)); 
results(b,y,'enrgy_batt_da') = sum(t,d_eff*qb_da.l(t)); 
results(b,y,'enrgy_batt_rg') = sum(t,dcr*q_a.l(t)); 
results(b,y,'cap_batt_rg') = sum(t,q_a.l(t)); 
results(b,y,'avg_lmp_chrg')$(ord(b)>1) = 
sum(t$(qb_w.l(t)>0),p_rt(t))/sum(t$(qb_w.l(t)>0),1); 
results(b,y,'avg_lmp_dchrg')$(ord(b)>1) = 
(sum(t$(qb_da.l(t)>0),p_da(t))+sum(t$(qb_rt.l(t)>0),p_rt(t)))/(sum(t$(qb_da.l(t)>0),1)+su
m(t$(qb_rt.l(t)>0),1)); 
results(b,y,'tline_cpcty_fctr')$(cap_l > 0) = sum(t,tline_flow(b,y,t))/(cap_l*card(t)); 
results(b,y,'bttry_lftm')$(ord(b)>1) = (batt_lf*strg*batt_cap)/sum(t,qb_w.l(t)); 
results(b,y,'line_cst') = t_cost; 
results(b,y,'crtld_wnd') = sum(t,scl_wnd*wnd_gen(t) - qb_w.l(t)- qw_rt.l(t)); 
cap_l=cap_l+j; 
); 
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results_optml(b,'tot_prft') = smax(y,results(b,y,'tot_prft')); 
i=i+5; 
); 
 
results(b,y,'tot_prft')$(not results(b,y,'tot_prft')) = EPS; 
results(b,y,'line_cap')$(not results(b,y,'line_cap')) = EPS; 
results(b,y,'bttry_cpcty')$(not results(b,y,'bttry_cpcty')) = EPS; 
results(b,y,'rev_wnd')$(not results(b,y,'rev_wnd')) = EPS; 
results(b,y,'rev_batt_da')$(not results(b,y,'rev_batt_da')) = EPS; 
results(b,y,'rev_batt_rt')$(not results(b,y,'rev_batt_rt')) = EPS; 
results(b,y,'rev_batt_rg_cap')$(not results(b,y,'rev_batt_rg_cap')) = EPS; 
results(b,y,'rev_batt_rg_rt')$(not results(b,y,'rev_batt_rg_rt')) = EPS; 
results(b,y,'enrgy_wnd')$(not results(b,y,'enrgy_wnd')) = EPS; 
results(b,y,'enrgy_batt_rt')$(not results(b,y,'enrgy_batt_rt')) = EPS; 
results(b,y,'enrgy_batt_da')$(not results(b,y,'enrgy_batt_da')) = EPS; 
results(b,y,'enrgy_batt_rg')$(not results(b,y,'enrgy_batt_rg')) = EPS; 
results(b,y,'cap_batt_rg')$(not results(b,y,'cap_batt_rg')) = EPS; 
results(b,y,'avg_lmp_chrg')$(not results(b,y,'avg_lmp_chrg')) = EPS; 
results(b,y,'avg_lmp_dchrg')$(not results(b,y,'avg_lmp_dchrg')) = EPS; 
results(b,y,'tline_cpcty_fctr')$(not results(b,y,'tline_cpcty_fctr')) = EPS; 
results(b,y,'bttry_lftm')$(not results(b,y,'bttry_lftm')) = EPS; 
results(b,y,'line_cst')$(not results(b,y,'line_cst')) = EPS; 
results(b,y,'crtld_wnd')$(not results(b,y,'crtld_wnd')) = EPS; 
 
batt_chrg_lvl(t,b,y)$(not batt_chrg_lvl(t,b,y)) = EPS; 
 
loop(b, 
loop(y, 
if(results(b,y,'tot_prft')=results_optml(b,'tot_prft'), 
results_optml(b,'line_cap') = results(b,y,'line_cap'); 
results_optml(b,'bttry_cpcty') = results(b,y,'bttry_cpcty'); 
results_optml(b,'rev_wnd') = results(b,y,'rev_wnd'); 
results_optml(b,'rev_batt_da') = results(b,y,'rev_batt_da'); 
results_optml(b,'rev_batt_rt') = results(b,y,'rev_batt_rt'); 
results_optml(b,'rev_batt_rg_cap') = results(b,y,'rev_batt_rg_cap'); 
results_optml(b,'rev_batt_rg_rt') = results(b,y,'rev_batt_rg_rt'); 
results_optml(b,'enrgy_wnd') = results(b,y,'enrgy_wnd'); 
results_optml(b,'enrgy_batt_rt') = results(b,y,'enrgy_batt_rt'); 
results_optml(b,'enrgy_batt_da') = results(b,y,'enrgy_batt_da'); 
results_optml(b,'enrgy_batt_rg') = results(b,y,'enrgy_batt_rg'); 
results_optml(b,'cap_batt_rg') = results(b,y,'cap_batt_rg'); 
results_optml(b,'avg_lmp_chrg') = results(b,y,'avg_lmp_chrg'); 
results_optml(b,'avg_lmp_dchrg') = results(b,y,'avg_lmp_dchrg'); 
results_optml(b,'tline_cpcty_fctr') = results(b,y,'tline_cpcty_fctr'); 
results_optml(b,'bttry_lftm') = results(b,y,'bttry_lftm'); 
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results_optml(b,'line_cst') = results(b,y,'line_cst'); 
results_optml(b,'crtld_wnd') = results(b,y,'crtld_wnd'); 
); 
); 
); 
 


